ISSN: 2305-7246 # Strong Efficient Edge Domination number of some graphs obtained by duplicating their elements # M.Annapoopathi¹ and N.Meena² Research Scholar, Department of Mathematics, P.G. & Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli – 627 012, Tamil Nadu, India) And Assistant Professor, National Engineering College, Kovilpatti - 628503, Tamil Nadu, India. annapoopathi.nec@gmail.com ²Assistant Professor, P.G. & Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli – 627 012, Tamil Nadu, India) meenamdt@gmail.com #### Abstract Let G = (V, E) be a simple graph. A subset S of E(G) is a strong (weak) efficient edge dominating set of G if $|N_s[e] \cap S| = 1$ for all $e \in E(G)(|N_w[e] \cap S| = 1$ for all $e \in E(G)$) where $N_s(e) = \{f/f \in E(G) \& deg f \ge deg e\}(N_w(e) = \{f/f \in E(G) \& deg f \le deg e\})$ and $N_s[e] = N_s(e) \cup \{e\}(N_w[e] = N_w(e) \cup \{e\})$. The minimum cardinality of a strong efficient edge domination set of G (weak efficient edge dominating set of G) is called a strong efficient edge domination number of G and is denoted by $\gamma'_{se}(G)(\gamma'_{we}(G))$. In this paper, the strong efficient edge domination number of some graphs obtained by duplicating their elements is studied. Keywords: Domination, edge domination, strong edge domination, efficient edge domination, strong efficient edge domination. #### 1. INTRODUCTION Throughout this paper, only finite, undirected and simple graphs are considered. Two volumes on domination have been published by T. W. Haynes, S. T. Hedetniemi and P. J. Slater [9, 10]. Edge dominating sets were studied by S. L. Mitchell and S. T. Hedetniemi [12]. A set F of edges in a graph G is called an edge dominating set of G if every edge in E-S is adjacent to at least one edge in F. The edge domination number $\gamma'(G)$ of a graph G is the minimum cardinality of an edge dominating set of G. The degree of an edge was introduced by V. R. Kulli [8]. The concept of efficient domination was introduced by D.W. Bange et al [4, 5]. The concept of strong domination graphs was introduced by E. Sampath Kumar and L. Pushpalatha [13] and efficient edge domination were studied by C. L. Lu et al [11] G. Santhosh [14] and D. M. Cardoso et al [6]. The strong efficient edge domination was introduced by M. Annapoopathi and N. Meena [1,2,3]. For all graph theoretic terminologies and notations, Harary [7] is referred to. The strong (weak) domination number $\gamma'_s(G)$ ($\gamma'_w(G)$) of G is the minimum cardinality of a strong (weak) dominating set of G and $\Gamma_s(G)$ is the maximum cardinality of a minimal strong dominating set of G. A subset D of E (G) is called an efficient edge dominating set if every edge in E (G) is dominated by exactly one edge in D. The cardinality of the minimum efficient edge domination numbers of some graphs obtained by duplicating their elements is studied. **Definition 1.1[1]**:Let G = (V, E) be a simple graph. A subset S of E(G) is a strong (weak) efficient edge dominating set of G if $|N_S[e] \cap S| = 1$ for all $e \in E(G)[|N_W[e] \cap S| = 1$ for all $e \in E(G)[|N_W[e] \cap S| = 1$ for all $e \in E(G)[|N_W[e] \cap S| = 1$ for all $e \in E(G)[|N_W[e] \cap S| = 1]$ International Journal of Modern Agriculture, Volume 9, No.4, 2020 ISSN: 2305-7246 $\{f/f \in E(G) \& degf \geq \deg e\}$ ($N_w(e) = \{f/f \in E(G) \& degf \leq \deg e\}$) and $N_s[e] = N_s(e) \cup \{e\}(N_w[e] = N_w(e) \cup \{e\})$. The minimum cardinality of a strong efficient edge dominating set of G (weak efficient edge dominating set of G and is denoted by $\gamma'_{se}(G)$ ($\gamma'_{we}(G)$). **Observation 1.2[1]:** $\gamma'_{se}(C_{3n}) = n$, $\forall n \in \mathbb{N}$. **Definition 1.3:** Duplication of avertex v of a graph G produces a new graph G' by adding a new vertex v' such that N[v']=N[v]. In other words a vertex v' is said to be a duplication of v if all vertices which are adjacent to v in G are also adjacent to v' in G'. **Definition 1.4:** Duplication of an edge e = uv by a new vertex w in a graph G produces a new graph G' such that $N[v] = \{u, v\}$. ## II. Strong efficient edge domination number of some graphs obtained by duplicating their elements **Theorem 2.1:** Let $G = P_n$, $n \ge 2$. Let G' be the graph obtained by duplicating all the vertices of G. Then strong efficient edge dominating set of G' exists if and only if n = 2, 4, 5, 6. **Proof:** Let $G = P_n$, $n \ge 2$. Let G' be the graph obtained by duplicating all the vertices of G. Case (1): Let $G = P_2$. The graph G' is given in the following figure. Then $\{e\}$ is the unique strong efficient edge dominating set of G'. Hence $\gamma_{se}(G') = 1$. Case (2): Let $G = P_4$. The graph G' is given in the following figure. Then $\{e_2, f_1, g_3\}$ is the unique strong efficient edge dominating set of G'. Hence $\gamma'_{se}(G') = 3$. Case (3): Let $G = P_5$. The graph G' is given in the following figure. Then $S_1 = \{e_2, e_4, f_1\}$, $S_2 = \{e_1, e_3, g_4\}$ are the strong efficient edge dominating sets of G' and $|S_i| = 2$, i = 1, 2. Therefore $\gamma'_{se}(G') = 3$. Case (4): Let $G = P_6$. The graph G' is given in the following figure. Then $\{e_1, e_3, e_5\}$ is the unique strong efficient edge dominating set of G'. Hence $\gamma'_{se}(G') = 3$. Conversely: Case (1): Let $G = P_3$. Let $V(G') = \{v_i, u_i / 1 \le i \le 3\}$, $e_1 = v_1 v_2$, $e_2 = v_2 v_3$, $f_1 = v_1 u_2$, $f_2 = v_2 u_3$, $g_1 = u_1 v_2$, $g_2 = u_2 v_3$. Then $E(G') = \{e_i, f_i, g_i / 1 \le i \le 2\}$. Deg $e_1 = \deg e_2 = 4$, $\deg f_1 = \deg g_2 = 2$, $\deg f_2 = \deg g_1 = 3$. Let S be a strong efficient edge dominating set of G'. Since $\deg e_1 = \deg e_2 = 4 = \Delta(G')$, any one of the edge e_1 or e_2 belongs to S. Suppose e_1 belongs to S. It strongly efficiently dominates all the edges other than g_2 . If the edge g_2 belongs to S, then $\left|N_S\left[f_1\right] \cap S\right| = \left|\{e_1, g_2\}\right| = 2 > 1$, a contradiction. Hence g_2 does not belongs to S. The proof is similar if the edge e_2 belongs to S. Hence G' has no strong efficient edge dominating set. Case (2): Let $G = P_{3n}$, $n \ge 3$. Let $V(G') = \{v_i, u_i / 1 \le i \le 3n\}$, $e_i = v_i v_{i+1}$, $f_i = v_i u_{i+1}$, $g_i = u_i v_{i+1}$, $1 \le i \le 3n - 1$. Then $E(G') = \{e_i, f_i, g_i / 1 \le i \le 3n - 1\}$. Deg $e_1 = \deg e_{3n-1} = 4$, $\deg e_i = 6$, $2 \le i \le 3n - 2$, $\deg f_1 = \deg g_{3n-1} = 2$, $\deg g_1 = \deg f_{3n-1} = 3$ and the remaining edges have degree 4. Let S be a strong efficient edge dominating set of G'. Since $\deg e_i = 6 = \Delta(G')$, $2 \le i \le 3n - 2$, either the edge e_2 or e_3 belongs to S. **Sub case 2(a):** Suppose the edge e_2 belongs to S. Then it strongly efficiently dominate e_1 , e_3 , f_2 , f_3 , g_1 , g_2 . Also the edges e_5 , e_8 , e_{11} ,..., e_{3n-4} belong to S. If the edge e_{3n-2} belongs to S then $|N_S[e_{3n-3}] \cap S| = |\{e_{3n-2}, e_{3n-4}\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate e_{3n-2} . Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. **Sub case 2(b):** Suppose the edge e_3 belongs to S. Then it strongly efficiently dominates e_2 , e_4 , f_3 , f_4 , g_2 , g_3 . Also the edges e_1 , e_6 , e_9 ,..., e_{3n-3} , e_{3n-1} belong to S. Also any one of the edges from each of the following set of edges $\{g_4, f_5\}, \{g_7, f_8\}, \ldots, \{g_{3n-5}, f_{3n-4}\}$ belongs to S. Suppose the edge g_4 belongs to S then $|N_S[f_3] \cap S| = |\{e_3, g_4\}| = 2 > 1$, a contradiction. Suppose the edge f_5 belongs to S then $|N_S[g_6] \cap S| = |\{e_6, f_5\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate g_4 and f_5 Therefore S is not a strong efficient edge dominating set of G. The proof is similar for the remaining set of edges. Hence G has no strong efficient edge dominating set. Case (3): Let $G = P_{3n+1}$, $n \ge 2$. Let $V(G') = \{v_i, u_i / 1 \le i \le 3n+1\}$, $e_i = v_i v_{i+1}$, $f_i = v_i u_{i+1}$, $g_i = u_i v_{i+1}$, $1 \le i \le 3n$. Then $E(G') = \{e_i, f_i, g_i / 1 \le i \le 3n\}$. Deg $e_1 = \deg e_{3n} = 4$, $\deg e_i = 6$, $2 \le i \le 3n - 1$, $\deg f_1 = \deg g_{3n} = 2$, $\deg g_1 = \deg f_{3n} = 3$ and the remaining edges have degree 4. Let S be a strong efficient edge dominating set of G'. Since $\deg e_i = 6 = \Delta(G')$, $2 \le i \le 3n - 1$, either the edge e_2 or e_3 belongs to S. **Sub case 3(a):** Suppose the edge e_2 belongs to S. Then it strongly efficiently dominate e_1 , e_3 , f_2 , f_3 , g_1 , g_2 . Also the edges e_5 , e_8 , e_{11} ,..., e_{3n-1} belongs to S. If the edge g_3 belongs to S then, $|N_S[f_2] \cap S| = |\{e_2, g_3\}| = 2 > 1$, a contradiction. Suppose the edge f_4 belongs to S then $|N_S[g_5] \cap S| = |\{e_5, f_4\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate g_3 and f_4 . Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. **Sub case 3(b):** Suppose the edge e_3 belongs to S. Then it strongly efficiently dominates e_2 , e_4 , f_3 , f_4 , g_2 , g_3 . Also the edges e_1 , e_6 , e_9 , ..., e_{3n-3} belongs to S. Also any one of the edges from each of the following set of edges $\{g_4, f_5\}, \{g_7, f_8\}, \ldots, \{g_{3n-5}, f_{3n-4}\}$ belongs to S. Suppose the edge e_{3n-1} belongs to S then $|N_S[e_{3n-2}] \cap S| = |\{e_{3n-1}, e_{3n-3}\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate e_{3n-1} . The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. Case (4): Let $G = P_{3n+2}$, $n \ge 2$. Let $V(G') = \{v_i, u_i / 1 \le i \le 3n+2\}$, $e_i = v_i v_{i+1}$, $f_i = v_i u_{i+1}$, $g_i = u_i v_{i+1}$, $1 \le i \le 3n+1$. Then $E(G') = \{e_i, f_i, g_i / 1 \le i \le 3n+1\}$. Deg $e_1 = \deg e_{3n+1} = 4$, $\deg e_i = 6$, $2 \le i \le 3n$, $\deg f_1 = \deg g_{3n+1} = 2$, $\deg g_1 = \deg f_{3n+1} = 3$ and the remaining edges have degree 4. Let S be a strong efficient edge dominating set of G'. Since $\deg e_i = 6 = \Delta(G')$, $2 \le i \le 3n$, either the edge e_2 or e_3 belongs to S. **Sub case 4(a):** Suppose the edge e_2 belongs to S. Then it strongly efficiently dominate e_1 , e_3 , e_3 , e_4 , e_5 , e_6 , e_8 , e_{11} ,..., e_{3n-1} , e_{3n-1} belongs to S. If the edge e_7 belongs to S then, $|N_S[f_2] \cap S| = |\{e_2, g_3\}| = 2 > 1$, a contradiction. Suppose the edge e_7 belongs to S then $|N_S[g_5] \cap S| = |\{e_7, f_4\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate e_7 and e_7 and e_7 has no strong efficient edge dominating set. Sub case 4(b): Suppose the edge e₃ belongs to S. Then it strongly efficiently dominates e₂, e₄, f₃, f₄, g₂, g₃. Also the edges e₁, e₆, e₉, ..., e_{3n} belongs to S. Also any one of the edges from each of the following set of edges $\{g_4, f_5\}, \{g_7, f_8\}, ..., \{g_{3n-2}, f_{3n-1}\}$ belongs to S. If the edge belongs to S then $|N_S[f_3] \cap S| = |\{e_3, g_4\}| = 2 > 1$, a contradiction. If the edge f_5 belongs $|N_S[g_6] \cap S| = |\{e_6, f_5\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate g_4 and f₅. The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. **Theorem 2.2:**Let $G = K_{1, n}, n \ge 1$. Let G' be the graph obtained by duplicating all the vertices of G. Then $\gamma_{se}(G') = 1, n \ge 1$. **Proof:**Let $G = K_{1, n}$, $n \ge 1$. Let $V(G') = \{v, v_i, u_i / 1 \le i \le n, n \ge 1\}$ and $E(G') = \{vv_i, vu_i, 1 \le i \le n, n \ge 1\}$. Then deg $vv_i = \deg vu_i = 2n - 1 = \Delta(G')$, $1 \le i \le n$. Therefore $\{vv_i / 1 \le i \le n\}$ or $\{vu_i / 1 \le i \le n\}$ is a strong efficient edge dominating set of G'. Hence $\gamma_{se}(G') = 1$, $n \ge 1$. **Theorem 2.3:** Let $G = D_{r, s}, r, s \ge 1$. Let G' be the graph obtained by duplicating all the vertices of G. Then $\gamma_{ss}(G') = 1, r, s \ge 1$. International Journal of Modern Agriculture, Volume 9, No.4, 2020 ISSN: 2305-7246 **Proof:** Let $G = D_{r, s}, r, s \ge 1$. Let $V(G') = \{u, v, u_i, v_j / 1 \le i \le r, 1 \le j \le s, r, s \ge 1\}$ and $E(G') = \{uu_i, vv_j, uu_i', vv_j', 1 \le i \le r, 1 \le j \le s, r, s \ge 1\}$. Then deg uv = 2(r+s), deg $uu_i = deg uu_i' = 2r$, deg $vv_j = deg vv_j' = 2s, r, s \ge 1$. Therefore $\{uv\}$ is the unique strong efficient edge dominating set of G'. Hence $\gamma_{se}(G') = 1$, $r, s \ge 1$. **Theorem 2.4:** Let $G = C_{3n}$, $n \ge 1$. Let G' be the graph obtained by duplicating all the vertices of G. Then G' has no strong efficient edge dominating set. **Proof:** Let $G = C_{3n}$, $n \ge 1$. Let $V(G') = \{u_i, v_i / 1 \le i \le 3n\}$, $e_i = v_i v_{i+1}$, $1 \le i \le 3n-1$, $e_{3n} = v_{3n} v_1$, $f_i = u_i v_{i+1}$, $1 \le i \le 3n-1$, $f_{3n} = u_{3n} v_1$, $g_i = v_i u_{i+1}$, $1 \le i \le 3n-1$, $g_{3n} = v_{3n} u_1$. Then $E(G') = \{e_i, f_i, g_i / 1 \le i \le 3n\}$. Deg $e_i = 6$, $1 \le i \le 3n$, deg $f_i = \deg g_i = 4$, $1 \le i \le 3n$. Let S be a strong efficient edge dominating set of G'. Since $\deg e_i = 6 = \Delta(G')$, $1 \le i \le 3n$, any one of the edges e_i , $1 \le i \le 3n$ belongs to S. Without loss of generality let it be the edge e_i . Then it strongly efficiently dominates e_2 , e_{3n} , f_1 , f_{3n} , g_2 . Also the edges e_4 , e_7 , e_{10} , ..., e_{3n-2} belongs to S. Also any one of the edges from each of the following set of edges $\{f_2, g_3\}$, $\{f_5, g_6\}$, ..., $\{f_{3n-1}, g_{3n}\}$ must belong to S. If the edge f_2 belongs to S then $|N_S[g_1] \cap S| = |\{e_1, f_2\}| = 2 > 1$, a contradiction. If the edge g_3 belongs to S then $|N_S[f_4] \cap S| = |\{e_4, g_3\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate f_2 and g_3 . The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G'. Hence G' has no strong efficient edge dominating set. **Theorem 2.5:** Let $G = W_{3n}$, $n \ge 2$. Let G' be the graph obtained by duplicating all the vertices of G. Then G' has no strong efficient edge dominating set. **Proof:** Let $G = W_{3n}$, $n \ge 2$. Let $V(G') = \{u, u_i, v_i / 1 \le i \le 3n - 1\}$, $e_i = uv_i$, $1 \le i \le 3n - 1$, $e_i' = uu_i$, $1 \le i \le 3n - 1$, $f_i = v_i v_{i+1}$, $1 \le i \le 3n - 2$, $f_{3n-1} = v_{3n-1} v_1$, $g_i = u_i v_{i+1}$, $1 \le i \le 3n - 2$, $g_{3n-1} = u_{3n-1} v_1$, $h_i = v_i u_{i+1}$, $1 \le i \le 3n - 2$, $h_{3n-1} = v_{3n-1} u_1$. Then $E(G') = \{e_i, e_i', f_i, g_i, h_i / 1 \le i \le 3n\}$. Deg $e_i = 6n + 1$, $deg e_i' = 6n - 1$, $1 \le i \le 3n - 1$, $deg f_i = 8$, $deg g_i = deg h_i = 6$, $1 \le i \le 3n - 1$. Let S be a strong efficient edge dominating set of G'. Since $deg e_i = 6n + 1 = \Delta(G')$, $1 \le i \le 3n - 1$, any one of the edges e_i , $1 \le i \le 3n - 1$ belongs to S. Without loss of generality let it be the edge e_i . Then it strongly efficiently dominate all the spoke edges e_i' , $1 \le i \le 3n - 1$ and two rim edges adjacent with e_i . Also the edges f_3 , f_6 , f_9 , ..., f_{3n} belongs to S. Also any one of the edges from each of the following set of edges $\{h_2, g_1\}$, $\{h_5, g_4\}$, ..., $\{h_{3n-1}, g_{3n-2}\}$ must belong to S. Case(1): Suppose the edge h_2 belongs to S then $|N_S[g_3] \cap S| = |\{h_2, f_3\}| = 2 > 1$, a contradiction. Case(2): Suppose the edge g_{3n-2} belongs to S then $|N_S[h_{3n-3}] \cap S| = |\{f_{3n}, g_{3n-2}\}| = 2 > 1$, a contradiction. Case(3): Suppose the edge h_{3n-1} belongs to S. Then it strongly efficiently dominates g_1 and g_{3n-2} . But there is no edge to strongly dominate the edge h_2 , a contradiction. Case(4): Suppose the edge g_1 belongs to S. Then it strongly efficiently dominates h_2 and h_{3n-1} . But there is no edge to strongly dominate the edge g_{3n-2} , a contradiction. The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. **Theorem 2.6:** Let $G = P_n$, $n \ge 2$. Let G' be the graph obtained by duplicating all the edges of G by vertices. Then strong efficient edge dominating set of G' exists if and only if $2 \le n \le 6$. **Proof:** Let $G = P_n$, $n \ge 2$. Let G' be the graph obtained by duplicating all the edges of G by vertices. Case (1): Let $G = P_2$. The graph G' is given in the following figure. Since $G' = C_3$, $\gamma_{se}(G') = 1$. Case (2): Let $G = P_3$. The graph G' is given in the following figure. Then $S_1 = \{e_1, g_2\}$, $S_2 = \{e_2, f_1\}$, $S_3 = \{g_1, g_2\}$, $S_4 = \{f_1, f_2\}$ are the strong efficient edge dominating sets of G' and $|S_i| = 2$, $1 \le i \le 4$. Therefore $\gamma'_{se}(G') \le 2$ Also no other strong efficient edge dominating sets of G' exists. Hence $\gamma'_{se}(G') = 2$. Case (3): Let $G = P_4$. The graph G' is given in the following figure. Then $S = \{e_2, f_1, g_3\}$ is the unique strong efficient edge dominating sets of G' and |S| = 3. Therefore $\gamma'_{se}(G') = 3$. Case (4): Let $G = P_5$. The graph G' is given in the following figure. Then $S_1 = \{e_2, f_1, e_4\}$, $S_2 = \{e_3, g_1, g_4\}$ are the strong efficient edge dominating sets of G' and $|S_i| = 3$, i = 1, 2. Therefore $\gamma'_{se}(G') \le 3$. Since $3 = \gamma'_s(G') \le \gamma'_{se}(G')$. Therefore $\gamma'_{se}(G') \ge 3$. Hence $\gamma'_{se}(G') = 3$. Case (5): Let $G = P_6$. The graph G' is given in the following figure. Then $S = \{e_1, e_3, e_5\}$ is the unique strong efficient edge dominating sets of G' and |S| = 3. Therefore $\gamma'_{se}(G') = 3$. International Journal of Modern Agriculture, Volume 9, No.4, 2020 ISSN: 2305-7246 Conversely: Case (1): Let $G = P_{3n}$, $n \ge 3$. Then G has no strong efficient edge dominating set. **Proof:** Let $G = P_{3n}$, $n \ge 3$. Let $V(G') = \{v_i / 1 \le i \le 3n, u_i / 1 \le i \le 3n-1\}$, $e_i = v_i v_{i+1}$, $1 \le i \le 3n-1$, $f_i = u_i v_i$, $g_i = u_i v_{i+1}$, $1 \le i \le 3n-1$. Then $E(G') = \{e_i, f_i, g_i / 1 \le i \le 3n-1\}$. Deg $e_1 = \deg e_{3n-1} = 4$, $\deg e_i = 6$, $2 \le i \le 3n-2$, $\deg f_1 = \deg g_{3n-1} = 2$ and the remaining edges have degree 4. Let S be a strong efficient edge dominating set of G'. Since $\deg e_i = 6 = \Delta(G')$, $2 \le i \le 3n-2$, either the edge e_2 or e_3 belongs to S. **Sub case 1(a):** Suppose the edge e_2 belongs to S. Then it strongly efficiently dominates e_1 , e_3 , e_4 , e_2 , e_3 , e_4 . Also the edges e_5 , e_8 , e_{11} ,..., e_{3n-4} belong to S. If the edge e_{3n-2} belongs to S then $|N_S[e_{3n-3}] \cap S| = |\{e_{3n-2}, e_{3n-4}\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate e_{3n-2} . Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. **Sub case 1(b):** Suppose the edge e_3 belongs to S. Then it strongly efficiently dominates e_2 , e_4 , f_3 , f_4 , g_2 , g_3 . Also the edges e_1 , e_6 , e_9 , ..., e_{3n-3} , e_{3n-1} belong to S. Also any one of the edges from each of the following set of edges $\{g_4, f_5\}, \{g_7, f_8\}, \ldots, \{g_{3n-5}, f_{3n-4}\}$ belongs to S. Suppose the edge g_4 belongs to S then $|N_S[f_4] \cap S| = |\{e_3, g_4\}| = 2 > 1$, a contradiction. Suppose the edge f_5 belongs to S then $|N_S[g_5] \cap S| = |\{e_6, f_5\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate g_4 and f_5 . The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. Case (2): Let $G = P_{3n+1}$, $n \ge 2$. Then G' has no strong efficient edge dominating set. **Proof:** Let $G = P_{3n+1}$, $n \ge 2$. Let $V(G') = \{v_i / 1 \le i \le 3n+1, u_i / 1 \le i \le 3n\}$, $e_i = v_i v_{i+1}$, $1 \le i \le 3n$, $f_i = u_i v_i$, $g_i = u_i v_{i+1}$, $1 \le i \le 3n$. Then $E(G') = \{e_i, f_i, g_i / 1 \le i \le 3n\}$. Deg $e_1 = \deg e_{3n} = 4$, $\deg e_i = 6$, $2 \le i \le 3n - 1$, $\deg f_1 = \deg g_{3n} = 2$ and the remaining edges have degree 4. Let S be a strong efficient edge dominating set of G'. Since $\deg e_i = 6 = \Delta(G')$, $2 \le i \le 3n - 1$, either the edge e_2 or e_3 belongs to S. **Sub case 2(a):** Suppose the edge e_2 belongs to S. Then it strongly efficiently dominate e_1 , e_3 , f_2 , f_3 , g_1 , g_2 . Also the edges e_5 , e_8 , $e_{11},...$, e_{3n-1} belongs to S. Also any one of the edges from each of the following set of edges $\{g_3, f_4\}, \{g_6, f_7\}, ..., \{g_{3n-3}, f_{3n-2}\}$ belongs to S. If the edge g_3 belongs to S then $|N_S[f_3] \cap S| = |\{e_2, g_3\}| = 2 > 1$, a contradiction. Suppose the edge f_4 belongs to S then $|N_S[g_4] \cap S| = |\{e_5, f_4\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate g_3 and f_4 . The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. Sub case 2(b): Suppose the edge e₃ belongs to S. Then it strongly efficiently dominates e₂, e₄, f₃, f₄, g₂, g₃. Also the edges e1, e6, e9, ..., e3n belongs to S. Also any one of the edges from each of the following set of edges $\{g_4, f_5\}, \{g_7, f_8\}, ..., \{g_{3n-2}, f_{3n-1}\}$ belongs to S. If the edge g₄belongs S then $|N_S[f_4] \cap S| = |\{e_3, g_4\}| = 2 > 1$, a contradiction. If the edge f₅ belongs to S then $|N_S[g_5] \cap S| = |\{e_6, f_5\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate g_4 and f₅. The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. International Journal of Modern Agriculture, Volume 9, No.4, 2020 ISSN: 2305-7246 Case (3): Let $G = P_{3n+2}$, $n \ge 2$. Then G has no strong efficient edge dominating set. **Proof:** Let $G = P_{3n+2}$, $n \ge 2$. Let $V(G') = \{v_i / 1 \le i \le 3n+2, u_i / 1 \le i \le 3n+1\}$, $e_i = v_i v_{i+1}$, $f_i = u_i v_i$, $g_i = u_i v_{i+1}$, $1 \le i \le 3n+1$. Then $E(G') = \{e_i, f_i, g_i / 1 \le i \le 3n+1\}$. Deg $e_1 = \deg e_{3n+1} = 4$, $\deg e_i = 6$, $2 \le i \le 3n$, $\deg f_1 = \deg g_{3n+1} = 2$ and the remaining edges have degree 4. Let S be a strong efficient edge dominating set of G'. Since $\deg e_i = 6 = \Delta(G')$, $2 \le i \le 3n$, either the edge e_2 or e_3 belongs to S. **Sub case 3(a):** Suppose the edge e_2 belongs to S. Then it strongly efficiently dominates e_1 , e_3 , f_2 , f_3 , g_1 , g_2 . Also the edges e_5 , e_8 , e_{11} ,..., e_{3n-1} , e_{3n+1} belongs to S. Also any one of the edges from each of the following set of edges $\{g_3, f_4\}, \{g_6, f_7\}, \ldots, \{g_{3n-3}, f_{3n-2}\}$ belongs to S. If the edge g_3 belongs to S then, $|N_S[f_3] \cap S| = |\{e_2, g_3\}| = 2 > 1$, a contradiction. Suppose the edge f_4 belongs to S then $|N_S[g_4] \cap S| = |\{e_5, f_4\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate g_3 and f_4 . The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. Sub case 3(b): Suppose the edge e₃ belongs to S. Then it strongly efficiently dominates e₂, e₄, f₃, f₄, g₂, g₃. Also the edges e₁, e₆, e₉, ..., e_{3n} belongs to S. Also any one of the edges from each of the following set of edges $\{g_4, f_5\}, \{g_7, f_8\}, ..., \{g_{3n-2}, f_{3n-1}\}$ belongs edge belongs S then $|N_S[f_4] \cap S| = |\{e_3, g_4\}| = 2 > 1$, a contradiction. If S the edge f_5 belongs then $|N_S[g_5] \cap S| = |\{e_6, f_5\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate g_4 and f₅. The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G. Hence G has no strong efficient edge dominating set. **Theorem 2.7:** Let $G = K_{1, n}, n \ge 1$. Let G' be the graph obtained by duplicating all the edges of G by vertices. Then $\gamma_{se}(G') = n, n \ge 1$. **Proof:** Let $G = K_{1, n}$, $n \ge 1$. Let $V(G') = \{v, v_i, u_i / 1 \le i \le n, n \ge 1\}$ and let $e_i = vv_i$, $f_i = vu_i$, $g_i = u_i v_i$. Then $E(G') = \{e_i, f_i, g_i, 1 \le i \le n, n \ge 1\}$. Then deg $e_i = \deg f_i = 2n$, $\deg g_i = 2, 1 \le i \le n$. Let S be a strong efficient edge dominating set of G'. Since $\deg e_i = \deg f_i = 2n = \Delta(G')$, $1 \le i \le n$, any one of the edge e_i or f_i must belongs to S. Without loss of generality, suppose the edge e_i belongs to S. Then it strongly efficiently dominate all the edges e_i , $2 \le i \le n$ and f_i , $1 \le i \le n$ and the edge g_1 . Also the edges g_i , $2 \le i \le n$ must belong to S. Therefore $S = \{e_1, g_i / 2 \le i \le n\}$ is a strong efficient edge dominating set of G' and |S| = n, $n \ge 1$. Therefore $\gamma_{se}(G') \le n$, $n \ge 1$. The proof is similar if the edges e_i , $2 \le i \le n$ or f_i , $1 \le i \le n$ belong to S. Also no set with less than n edges is a strong efficient edge dominating set of G'. Therefore $\gamma_{se}(G') \ge n$, $n \ge 1$. Hence $\gamma_{se}(G') = n$, $n \ge 1$. **Theorem 2.8:** Let $G = D_{r,s}, r, s \ge 1$. Let G' be the graph obtained by duplicating all the edges of G by vertices. Then $\gamma_{se}(G') = r + s + 1, r, s \ge 1$. **Proof:** Let $G = D_{r, s}$, $r, s \ge 1$. Let $V(G') = \{u, v, u_i, v_j, u_i', v_j' / 1 \le i \le r, 1 \le j \le s, r, s \ge 1\}$ and let e = uv, f = uw, g = vw, $e_i = uu_i$, $e_i' = uu_i'$, $f_j = vv_j$, $f_j' = vv_j'$, $g_i = u_iu_i'$, $h_j = v_jv_j'$, $1 \le i \le r, 1 \le j \le s, r, s \ge 1$. Then $E(G') = \{e, f, g, e_i, e_i', f_i, f_j', g_i, h_j / 1 \le i \le r, 1 \le j \le s, r, s \ge 1\}$. Deg e = 2(r+s+1), deg f = 2r, deg g = 2s, deg $e_i = deg$ $e_i' = 2r$, deg $f_j = deg$ $f_j' = 2s$, deg $g_i = deg$ $h_i = 2$, $1 \le i \le r, 1 \le j \le s, r, s \ge 1$. Since deg $e = 2(r+s+1) = \Delta(G')$, $1 \le i \le r, 1 \le j \le s, r, s \ge 1$, International Journal of Modern Agriculture, Volume 9, No.4, 2020 ISSN: 2305-7246 $S = \{e, g_i, h_j / 1 \le i \le r, 1 \le j \le s, r, s \ge 1\}$ is the unique strong efficient edge dominating set of G and $|S| = r+s+1, 1 \le i \le r, 1 \le j \le s, r, s \ge 1$. Hence $\gamma_{se}(G) = r+s+1, r, s \ge 1$. **Theorem 2.9:** Let $G = W_{3n}$, $n \ge 2$. Let G' be the graph obtained by duplicating all the edges of G by vertices. Then $\gamma_{se}(G') = 2n$, $n \ge 2$. **Proof:**Let $G = W_{3n}$, $n \ge 2$. Let $V(G') = \{u,v_i, u_i, w_i / 1 \le i \le 3n - 1\}$ and $e_i = v_i v_{i+1}$, $1 \le i \le 3n - 2$, $e_{3n-1} = v_{3n-1} v_1$ $e_i' = vv_i$, $1 \le i \le 3n - 1$, $f_i = u_i v_i$, $1 \le i \le 3n - 1$, $f_i = u_i v_i$, $1 \le i \le 3n - 1$, $f_i = u_i v_i$, $1 \le i \le 3n - 1$, $f_i = u_i v_i$, $1 \le i \le 3n - 1$. Then $E(G') = \{e_i, e_i', f_i', g_i, g_i' / 1 \le i \le 3n - 1\}$. Deg $e_i = 10$, deg $e_i' = 6n + 2$, deg $f_i = \deg f_i' = \deg g_i = 6$, deg $g_i' = 6n - 2$, $1 \le i \le 3n - 1$. The edges e_i' are adjacent with each other. To dominate them, any one e_i' is considered. Without loss of generality, let it be e_1' . $S = \{e_1', e_3, e_6, \ldots, e_{3n-3}, f_2', f_2', f_5', \ldots, f_{3n-1}'\}$ is astrong efficient edge dominating set of G' and |S| = 2n, $n \ge 2$. Therefore $\gamma_{se}'(G') \le 2n$, $n \ge 2$. The proof is similar if the edges e_i' , $2 \le i \le n$ belong to S. Also no set with less than 2n edges is a strong efficient edge dominating set of G'. Therefore $\gamma_{se}'(G') \ge 2n$, $n \ge 2$. Hence $\gamma_{se}'(G') = 2n$, $n \ge 2$. **Theorem 2.10:** Let $G = C_{3n}$, $n \ge 1$. Let G' be the graph obtained by duplicating all the edges of G by vertices.. Then G' has no strong efficient edge dominating set. **Proof:** Let $G = C_{3n}$, $n \ge 1$. Let $V(G') = \{u_i, v_i / 1 \le i \le 3n\}$, $e_i = v_i v_{i+1}$, $1 \le i \le 3n-1$, $e_{3n} = v_{3n} v_1$, $f_i = u_i v_i$, $1 \le i \le 3n$, $g_i = u_i v_{i+1}$, $1 \le i \le 3n-1$, $g_{3n} = u_{3n} v_1$. Then $E(G') = \{e_i, f_i, g_i / 1 \le i \le 3n\}$. Deg $e_i = 6$, $1 \le i \le 3n$, deg $f_i = \deg g_i = 4$, $1 \le i \le 3n$. Let S be a strong efficient edge dominating set of G'. Since $\deg e_i = 6 = \Delta(G')$, $1 \le i \le 3n$, any one of the edges e_i , $1 \le i \le 3n$ belongs to S. Without loss of generality let it be the edge e_1 . Then it strongly efficiently dominates e_2 , e_{3n} , f_1 , f_2 , g_1 , g_{3n} . Also the edges e_4 , e_7 , e_{10} , ..., e_{3n-2} belongs to S. Also any one of the edges from each of the following set of edges $\{g_2, f_3\}$, $\{g_5, f_6\}$, ..., $\{g_{3n-1}, f_{3n}\}$ must belong to S. If the edge g_2 belongs to S then $|N_S[f_2] \cap S| = |\{e_1, g_2\}| = 2 > 1$, a contradiction. If the edge f_3 belongs to S then $|N_S[g_3] \cap S| = |\{e_4, f_3\}| = 2 > 1$, a contradiction. Hence there is no edge in S to strongly efficiently dominate g_2 and f_3 . The proof is similar for the remaining set of edges. Therefore S is not a strong efficient edge dominating set of G'. Hence G' has no strong efficient edge dominating set. #### III. CONCLUSION In this paper, the strong efficient edge domination number of some graphs obtained by duplicating their elements is determined. ## REFERENCES - [1] Annapoopathi, M., and Meena, N., (2018). Strong efficient edge domination number of some cycle related graphs, IJMTT, Vol 59, Part III, 1 7. - [2] Annapoopathi, M., and Meena, N., (2018). Strong efficient edge domination number of some corona related graphs, JETIR, Vol 6, Issue 2, 778–787. - [3] Annapoopathi, M., and Meena, N., (2019). **Strong efficient edge domination number of some sub division graphs**, AMSJ, Vol 3, Special issue on ICRAPAM, 607–616. - [4] Bange, D. W., Barkauskas, A. E., Host, L. H., and Slater, P. J., (1996). **Generalized domination and efficient domination in graphs**, Discrete Math., 159:1 11. - [5] Bange, D.W., Barkauskas, A.E and Slater, P.J., (1988). **Efficient dominating sets in**Applications of Discrete Mathematics, pages 189 199. ISSN: 2305-7246 - [6] Cardoso, D.M., J. Orestes Cerdefra Charles Delorme, Pedro C. Silva., (2008). **Efficient edge domination in regular graphs**, Discrete Applied Mathematics 156, 3060 3065. - [7] Harary, F., (1969). **Graph Theory**, Adison Wesley, Reading Mass. - [8] Kulli, V.R., (2010). **Theory of Domination in Graphs** (Vishwa International Publications, Gulbarga, India. - [9] Haynes, T.W., .Hedetniemi, S.T., Peter J.Slater (Eds), (1998). **Domination in Graphs: Advanced Topics**, Marcel Decker, Inc., New York. - [10] Haynes, T.W., .Hedetniemi, S.T., Peter J.Slater (Eds), (1998). **Fundamentals of Domination in graphs**, Marcel Decker, Inc., New York. - [11] Lu, C.L., M-T.Ko., Tang, C.Y., (2002). **Perfect edge domination and efficient edge domination in graphs**, Discrete Applied Mathematics, 119227-250. - [12] Mitchell, S.L., Hedetniemi, S.T., (1997). **Edge domination in trees,** Congr. Number.19489-509. - [13] Sampath Kumar, E., and Pushpalatha, L., (1996). **Strong weak domination and balance in a graph,** Discrete Math., 161:235 242. - [14] Santhosh, G., (2003). A study on integral sum graphs and various graph theoretic parameters, Ph.D thesis.