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Abstract  

The intend of this article is to initiate the concept of doubt Q-fuzzy  Z-ideals of Z-algebras and 

to learn its properties. More Evidently, the theory of doubt Q-fuzzy is analyzed over homomorphism and 

Cartesian product as well. 
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1.Introduction 

 The concept of fuzzy set was initiated  by L.A.Zadeh in 1965 [12]. Further, these thoughts have been 

utilized to other algebraic structures such as groups, graphs, rings, modules, vector spaces and topologies. The 

concept of Z-algebra is introduced  by Chandramouleeswaran.M [1] et.al., in 2017. In 2019, Sowmiya .S and 

Jeyalakshmi.P [11]fuzzified  Z-algebra . In 2021, Sithar selvam P.M.[4] et.al., studied  the properties of fuzzy dot 

Z-algebra over sub algebra and Z-ideals. These works on Z-algebra motivated us to do Doubt Q-fuzzy Z-ideals of 

Z-algebra as an added feather.   

2. Preliminaries 

Definition 2.1 [1] : Let X be a  nonempty set  with a constant 0 and a binary operation ‘ * ’ . It is called as Z – 

algebra, if it satisfies the following conditions. 

(1) a *0  = 0 

(2) 0 * a = a 

(3) a * a = a 

(4) a * b = b * a  whenever a  0 ; b  0 for all a , b  X 

In X, a binary relation  , we illustrate  as,  a  b  if and only if  a * b = 0. 

Definition 2.2 [1] : If  X is a Z- algebra and I , a subset of X,  is called as Z - ideal of X, provided following 

axioms are true. 

1. 0   I 

2. a * b   I and b  I   a  I for all a,b  X. 

Definition 2.3 [1,3,5] : A non empty sub set  S of a Z-algebra X is to be a  sub algebra of X if  a*b   S, for every 

a , b   S. 

Definition 2.4 [6, 7] : A map g : X Y is called a homomorphism if g (a * b) = g(a) * g(b) , for all a , b X, 

where X and Y are Z-algebras. 

Definition 2.5 [2, 8, 9] : Let X be a non-empty set. A fuzzy subset  of the set X is a mapping  from X to [0,1] . 

(i.e)  : X  [0,1] . 
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Definition 2.6 [10, 11]: Let X be a Z-algebra. A fuzzy set   in X is called a fuzzy Z-ideal of X if it satisfies the 

following conditions.  

i)  (0) ≥  (a)  

ii)  (a) ≥ min { (a * b),  (b)}, for all a, b  X . 

Definition 2.7[7, 11] : A fuzzy set   in Z-algebra X is called a fuzzy Z- sub algebra of X if  

 (a * b) ≥ min { (a),  (b)}, for all a, b X. 

Definition 2.8 : Let Q and G be any two sets. A mapping : G x Q [0, 1] is called as 

Q –fuzzy set in G. 

MAIN RESULTS 

3. DOUBT Q-FUZZY Z – IDEALS OF Z-ALGEBRAS 

Definition 3.1 : A Q- fuzzy set   in X is called a Q-fuzzy Z- ideal of X if  

  (i)  (0, q) ≥  (a, q) 

  (ii)  (a, q) ≥ min { (a * b, q),  (b, q)}, for all a, b, c  X and q ∈ Q. 

Definition 3.2 : A Q-fuzzy set  of  X is called a Doubt Q-fuzzy Z-ideal of X  if  

 (i)    (0, q) ≤  (a, q) 

      (ii)   (a, q) ≤ max { (a * b, q),  (b, q)}, for all a, b  X and q ∈ Q. 

Theorem 3.1 : Every Doubt Q - fuzzy Z- ideal   of a Z-algebra X is order preserving. 

Proof : Let  be a Doubt Q-Fuzzy Z- ideal of a Z-algebra X and let a, b  X and q ∈ Q be such that a  b,  

then a * b = 0. 

Now     (a, q)  max { (a * b, q), (b,q)} 

  = max { (0,q) , (b,q)} 

  = (b,q) 

 (a,q) ≤  (b,q). 

Hence  is order preserving. 

Theorem 3.2 :  is a Q-fuzzy Z-ideal of a Z-algebra X iff c is a Doubt Q-fuzzy Z-ideal of X. 

Proof: Let  be a Q-fuzzy Z- ideal of X and let a , b  X and q ∈ Q. 

          (0, q)  ≥   (a, q) 

     1- c (0, q)  1 - c (a, q)   c (0, q)   c (a, q)  

and   c (a, q) = 1 -  (a, q) 

                  ≤ 1 – min { (a * b, q),  (b, q)} 

  = 1 – min {1 - c (a * b, q), 1 - c (b, q)} 

  = max {c (a * b, q), c (b, q)}  

Thus c is a Doubt Q-fuzzy Z-ideal of X. The converse also can be proved similarly.    

Theorem 3.3: For any Doubt Q- fuzzy Z-ideal  of X, N = {aX and q ∈ Q /  (a, q) =  (0,q) } is a Z-ideal of 

X.  

Proof: Let a * b, b  N . Then  (a * b, q) =  (b, q) =  (0, q) 

Since   is a Doubt Q-fuzzy Z-ideal  of X ,  

     (a, q)   max { (a * b, q),  (b, q)} 

= max {  (0,q) ,  (0,q) } 
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=  (0,q) 

Hence a  N . Therefore N is a Z-ideal of X. 

Theorem 3.4 : If 1 and 2 are Doubt Q-fuzzy Z- ideals of a Z-algebra X, then 1  2 is also a  Doubt Q-fuzzy 

Z-ideal of X.   

Proof : Let  a, b  X and q ∈ Q. Then  

  (1  2) (0, q) = min { 1 (0, q) , 2 (0, q)} 

                              min { 1 (a, q) , 2 (a, q)} 

                            = (1  2) (a, q) 

(1  2) (a, q) = min {1  (a, q) ,  2 (a, q) } 

                            min {max {1  (a * b, q) ,  1 (b, q) }, max {2  (a * b, q) ,  2 (b, q) }} 

               = min {max{1  (a * b, q) , 2  (a * b, q)  }, max {1 (b, q) , 2 (b, q) } } 

                           max { min{1  (a * b, q) , 2  (a * b, q)  }, min {1 (b, q) , 2 (b, q) }} 

                          = max {(1  2)  (a * b, q), (1  2)  (b , q)}. 

 ((1  2)) (a, q)  max {(1  2)  (a * b, q), (1  2)  (b , q)}. 

 1  2 is a Doubt Q-fuzzy Z- ideal of X. 

Theorem 3.5: Arbitrary union of Doubt  Q-fuzzy Z-ideals of Z-algebra X is also a Doubt Q-fuzzy Z-ideal. 

Proof  : Let {  i } be a family of  Doubt Q-fuzzy Z-ideals of  Z-algebra X. 

Let  a,b  X  and q ∈ Q. 

     (  i  ) (0, q)  = sup (i (0 , q) )  

      sup (i (a , q) ) 

     = (  i  ) (a, q) 

     (   i ) (a, q) = Sup (i (a ,q) ) 

                   Sup {max { i (a * b, q) , i (b, q)}} 

     = max {Sup (i (a * b, q)), Sup (i (b, q))} 

     = max {(  i  ) (a * b, q) , (  i  ) ( b, q)} 

Definition 3.6: If  is a Q-fuzzy set of X, then for a fixed s  [0, 1], the set s ={a  X (a,q) ≤ s for all q ∈ Q} 

is  as known lower level s-cut of . Clearly s    s = X for s[0,1] if s1 < s2 , then s1  s2. 

Theorem 3.7 : If  is a Doubt Q-fuzzy Z-ideal of Z-algebra X, then the lower level s-cut , s
  is a Z-ideal of X for 

every s  [0,1] . 

Proof : Let  be a Doubt Q-fuzzy Z-ideal of Z-algebra X. 

Then it is clear that 0 ∈ s. 

Now let a * b ∈ s
 and b ∈ s , for all  a, b  X and q ∈ Q. 

        (a * b ,q ) ≤  s and  (b, q ) ≤  s.  

Since  is a Doubt Q-fuzzy Z-ideal of X,  

  (a, q ) ≤  max {  (a * b , q ),  ( b , q )} ≤ max {s, s} = s  a ∈ s. 

Hence s
 is a Z- ideal of X for every s [0,1]. 

Theorem 3.8 : Let  be a Q-fuzzy set of Z- algebra X. If for each s ∈ [0, 1], the lower level s-cut s is a Z-ideal of 

X, then  is a Doubt Q- fuzzy Z-ideal of X.   

Proof : Let s be a Z-ideal of X. 

If  (0,q) >   (a, q) for some a ∈ X and q ∈ Q, then  (0, q) > s0 >  (a, q) by taking  
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          s0=  {  (0,q) +  (a, q)}. 

Hence 0 ∉  s0 and a ∈ s0 , which is a contradiction. 

Therefore,  (0, q) ≤  (a, q). 

Let a,b ∈ X and q ∈ Q be such that  (a, q) > max { (a * b, q),  (b, q)}.   

Taking s1 =   { (a , q) + max { (a * b , q),  (b, q)}}  

   (a, q) > s1 > max { (a * b, q),  (b, q)}. 

It follows that a * b, b ∈ s1 and   a ∉ s1. This is a contradiction. 

Hence  (a, q) ≤ max { (a * b, q), (b, q)}   

Therefore  is a Doubt Q-fuzzy Z-ideal of X. 

 

4. HOMOMORPHISM ON DOUBT Q-FUZZY Z- ALGEBRAS 

Definition 4.1 :  Let (X,*,0) and ( Y , ,0 ) be Z– algebras. A mapping g: X  Y is said to be a homomorphism if 

 g( a * b) =  g(a)  g(b) for all a, b  X. 

Definition 4.2 : Let (X,*, 0) and ( Y,,0) be Z-algebras. A mapping g: X  Y is said to be an anti 

homomorphism if  g( a * b) =  g(b)  g(a) for all a, b  X. 

Definition 4.3 : Let g: X  X be an endomorphism and  be a fuzzy set in X. A new fuzzy set g  in X, is defined 

as  

 g (a) = (g(a)) for all ‘a’ in X. 

Theorem 4.4 : Let g be an endomorphism of a Z- algebra X. If  is a Doubt Q- fuzzy Z-ideal of X, then so is g . 

Proof: Let  be a Doubt Q-fuzzy Z-ideal of X. 

Now,           g (0, q) = ( g (0,q )) ≤  (g(a, q)) = g (a, q) ,  for all a,b  X and qQ. 

Let a,b  X and q Q. 

Then       g (a, q) =  (g(a, q)) 

        max { (g(a *b, q)) , (g (b, q))} 

    = max {g (a * b, q) , g (b, q)} 

            g (a, q)  max { g (a * b, q) , g (b, q)} 

Hence g  is a Doubt Q- fuzzy Z-ideal of X.   

Theorem 4.5 : Let g: X  Y be an epimorphism of  Z- algebra. If g  is a Doubt Q-fuzzy Z-ideal of X, then  is 

also a Doubt Q-fuzzy Z-ideal of Y. 

Proof: Let g be a Doubt Q-fuzzy Z-ideal of X. 

Let b  Y and q Q. Then there exists a  X such that g(a, q) = (b, q). 

Now, (0, q)  =   (g (0, q) ) 

                     = g (0, q)  

          g (a, q) = (g(a, q)) = (b, q)  

  (0, q)  (y, q ) 

Let b1, b2 ,b3   Y.    

  (b1, q) =  (g (a1) , q)  
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              = g  (a1, q) 

               max {g  (a1* a2 , q ), g  (a2, q)} 

   = max { [g (a1 * a2, q)],  [g(a2,q)]} 

              = max { [g(a1, q)  g(a2, q)],  [g(a2, q)]}  

             = max { [(b1, q)  (b2, q)],  [(b2, q)]} 

    is a Doubt Q- fuzzy Z-ideal of Y. 

Theorem 4.6 : Let g: X  Y be a homomorphism of Z- algebra. If  is a Doubt Q-fuzzy Z-ideal of Y then g  is 

also a Doubt Q-fuzzy Z-ideal of X. 

Proof: Let  be a Doubt Q- fuzzy Z-ideal of Y. 

Let a, b  X. 

      g (0, q)  = (g(0, q))  

          (g(a, q))= g (a, q)    

   g (0, q)  g (a, q). 

         g (a, q) =  [g (a , q)] 

            max { (g (a * b, q)),  (g (b, q))} 

                         = max {g (a * b, q), g (b , q)} 

 g (a , q)   max { g (a * b, q), g (b, q) }.  

Hence g is a Doubt Q-fuzzy Z-ideal of X. 

 

5. CARTESIAN PRODUCT OF DOUBT Q-FUZZY Z-IDEALS OF Z–ALGEBRAS 

The Cartesian product of Doubt Q-fuzzy Z-ideals of Z-algebra is defined and some of its properties are 

established. 

Definition 5.1 :Let  and  be two fuzzy sets in X. The Cartesian product  x  : X x X  [0,1] is defined by  ( x 

 ) ( a, b) = min {(a),  (b)},  for all a, b  X.  

Definition 5.3:Let  and  be  Doubt Q-fuzzy sets in X. The Cartesian product  x  : X x X  [0,1] is defined by 

( x ) (( a , b),q) =  max {(a, q), (b, q)} , for all a, b  X and qQ.  

Theorem 5.4 : If  and  are Doubt Q-fuzzy Z-ideals in  Z– algebra X, then  x  is a Doubt Q-fuzzy Z-ideal in X 

x X. 

Proof: Let ( a1, a2)  X x X and q Q. 

           ( x )((0, 0), q) } = max {(0, q), (0, q)} 

                                      ≤  max {(a1, q),  (a2, q)} 

                                      = ( x ) ((a1, a2), q) 

         ( x )((0, 0), q)  ≤ ( x ) ((a1, a2), q) 

Let (a1, a2), (b1, b2)  X x X. 

( x )[(a1, a2) ,q] = max {(a1 , q),(a2, q)} 

                           max {max {(a1* b1, q), (b1, q)},max { (a2* b2, q),  (b2, q)},}  

                          = max {max { (a1*b1, q),  (a2* b2, q)}, max {(b1, q), (b2, q)}}               

                          = max {( x ) ((a1 * b1, q),(a2* b2 , q)),(  x ) (( b1, b2), q)}                                      
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                          = max {( x ) [((a1, a2) *(b1, b2)), q)], ( x ) [((b1 , b2),q)]}                                           

Hence,  x  is a Doubt Q-fuzzy  Z- ideal in X x X. 

Theorem 5.5: Let   &   be fuzzy sets in a Z-algebra X such that  x  is a Doubt Q-fuzzy Z-ideal of X x X. 

Then    

          (i) Either  (0,q) ≤  (a, q) (or)  (0,q) ≤  (a, q) for all a  X and qQ. 

         (ii) If  (0,q) ≤   (a, q) for all a  X and qQ, then either  (0,q)  ≤  (a, q) (or) (0,q)  ≤  (a, q) 

         (iii) If (0,q)  ≤   (a, q) for all a X and qQ, then either (0,q) ≤  (a, q)  (or)  (0,q) ≤ (a, q). 

Proof: Straightforward. 

Theorem 5.6: Let   &   be fuzzy sets in a Z-algebra X such that  x  is a Doubt Q-fuzzy Z-ideal of X x X. 

Then either  or  is a Doubt Q-fuzzy Z-ideal of X.  

Proof: First we prove that  is a Doubt Q- fuzzy Z-ideal of X.  

Since by 5.5(i) either (0,q) ≤ (a, q) or (0,q) ≤ (a, q) for all a X and qQ.  

Assume that (0,q) ≤ (a, q) for all a X and qQ. It follows from 5.5 (iii) that either 

 (0,q) ≤  (a,q)  (or) (0,q) ≤  (a,q). 

If (0,q) ≤  (a, q), for any a X and qQ ,then 

 (0, q) = max {(a,q), (0, q)}= ( x ) ((a, 0),q)   

  (a, q) = ( x ) [ (a, 0), q ] 

                     max {( x ) [((a,0),q) * ((b,0), q)], ( x ) [((b,0), q)]} 

                    = max {( x ) [(a*b, 0 * 0), q], ( x ) [(b , 0), q]} 

                    = max {( x ) [(a * b, 0), q], ( x )  [(b,0) ,q]} 

                    = max { (a * b, q),  (b , q)} 

 (a, q)  max { (a * b, q),  (b , q)} 

Hence  is a Doubt Q- fuzzy Z-ideal of X.  

 Similarly we will prove that  is a Doubt Q- fuzzy Z-ideal of X. 

 

6. CONCLUSION 

In this article we have discussed Doubt Q-fuzzy Z- ideal of Z-algebras and its lower level s-cuts in detail. 

We hope that this work would lay other foundations for further study of the theory of Z-algebras. In our future 

study of fuzzy structure of Z-algebra, can be extended to the topics, intuitionistic fuzzy set, interval valued fuzzy 

sets, for more interesting results. 
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