A New Type Of Closed Sets In Terms Of Grills

¹Mani Parimala, ²*Ibtesam Alshammari and ³P.M.Sithar Selvam

¹Department of *Mathematics, Bannari Amman Institute of Technology,*

Sathyamangalam-638401, Tamil Nadu, India.

*E-mail: rishwanthpari@gmail.com*²*Department of Mathematics, Faculty of Science, University of Hafr Al Batin-31991, Saudi Arabia.

Corrsponding Author Email: iealshamri@hotmail.com

³Department of Mathematics, RVS School of Engineering and Technology,

Dindigul-624 005, Tamilnadu, India.

E-mail : sitharselvam@gmail.com

Abstract

In this paper, we introduce and investigate the notions of $\alpha\omega$ - border, $\alpha\omega$ -derived, $\alpha\omega$ -frontier, $\alpha\omega$ -exterior of a set using the concept of $\alpha\omega$ - open sets. Further, we shall define the $\alpha\omega(\theta)$ -adherence and $\alpha\omega(\theta)$ - convergence using the concept of grills and study some of their properties.

Keywords. $\alpha\omega$ -derived, $\alpha\omega$ -border, $\alpha\omega$ -frontier, $\alpha\omega$ -exterior, Grill, $\alpha\omega(\theta)$ convergence and $\alpha\omega(\theta)$ -adherence of a grill, $\alpha\omega$ -closed space.

AMS Subject Classification: 54B05, 54 C 08

Introduction

Recently, the concept of $\alpha\omega$ -closed sets in topological spaces was introduced by M. Parimala et al. in [6] and further more they studied their properties and its applications in [7, 8]. The idea of grill was introduced by G.Choquent [1] in 1947 and since then it has been observed in connection with many mathematical investigation such as the theories of proximity spaces, compactification etc, that grills as a tool (like filters) are extremely useful and convenient for many situations.

In 2006, M.N. Mukherjee and B.Roy [4] studied the notion of p-closed sets in

topological spaces in-terms of grills.

In this paper, we introduce the notions of $\alpha\omega$ -derived, $\alpha\omega$ -border, $\alpha\omega$ - frontier and $\alpha\omega$ -exterior of a set and show that some of their properties are analogous to those for open sets. Further, we shall define the $\alpha\omega(\theta)$ -adherence and $\alpha\omega(\theta)$ convergence of a grill and develop the concept to some extent so that the result derive here may support our subsequent deliberations.

1 Preliminaries

All through this paper, (X,τ) and (Y,σ) (or simply X and Y) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by cl(A) and int(A)

respectively.

Let $A \subseteq X$, the closure of A and the interior of A will be denoted by cl(A) and int(A) respectively. **Definition 2.1.** [1] A grill G on a topological space X is defined to be a collection of non empty subsets of X such that

- (i) $A \in G \text{ and } A \subseteq B \subseteq X \Rightarrow B \in G \text{ and}$
- (ii) $A, B \subseteq X$ and $A \cup B \in G \Rightarrow A \in G$ or $B \in G$.

Definition 2.2. A subset A of a space (X, τ) is called a

- 1. semi-open set [2] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$,
- 2. α -open set [5] if $A \subseteq int(cl(int(A)))$ and an α -closed set if $cl(int(cl(A))) \subseteq$

Α,

- 3. pre open set [3] if $A \subseteq int(cl(A))$ and pre closed set if $cl(int(A)) \subseteq A$,
- 4. δ -open set [12] if for each $x \in A$, there exists a regular open set G such that

 $x \in G \subset A$ and

5. regular open set [13] if A = int(cl(A)) and regular closed if its complement is regular open; equivalently A is regular closed if A = cl(int(A)).

The semi-closure (resp. α -closure) of a subset *A* of a space (*X*, τ) is the intersection of all semi-closed (resp. α -closed) sets that contain *A* and is denoted by *scl*(*A*) (resp. $\alpha cl(A)$).

Definition 2.3. A subset A of a space (X, τ) is called a

1. a $\omega(=g)$ -closed set [9, 11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open b

in (*X*, τ). The complement of ω -closed set is called ω -open set and

2. a $\alpha\omega$ -closed set [6] if $\omega cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) . The complement of $\alpha\omega$ -closed set is called $\alpha\omega$ -open set.

The set of all $\alpha\omega$ -open sets of *X* will be denoted by $\alpha\omega O(X)$ and the said of all those members of $\alpha\omega O(X)$, which contain a given point *x* of *X* will be designated by $\alpha\omega O(x)$. The intersection of all $\alpha\omega$ -closed sets in *X*, which are contained in a given set $A(\subseteq X)$ is called the $\alpha\omega$ -closure of *A*, to be denoted by $cl_{\alpha\omega}(A)$. It is known that for $x \in X$ and $A \subseteq X$, $x \in \alpha\omega$ -cl(*A*) if and only if $U \cap A$ $6= \varphi$, for all

 $U \in \alpha \omega O(x)$. Again for any set *A* in *X*, $\alpha \omega(\theta)$ -cl(*A*), denoted by $\alpha \omega(\theta)$ -cl(*A*), is n o defined as $\alpha \omega(\theta)$ -cl(*A*) = $x \in X : \alpha \omega$ -cl(*U*) $\cap A = \phi$ for all $U \in \alpha \omega O(x)$.

2 More on $\alpha\omega$ -closed sets in topological spaces

Definition 3.1. Let *A* be a subset of space *X*. A point $x \in X$ is said to be $\alpha\omega$ -limit point of *A* if for each $\alpha\omega$ open set *U* containing *x*, $U \cap (A - \{x\}) = \varphi$. The set of all $\alpha\omega$ -limit points of *A* is called a $\alpha\omega$ -derived set
of *A* and is denoted by $D_{\alpha\omega}(A)$.

Theorem 3.2. For subsets *A*,*B* of a space *X*, the following statements hold:

- (i) $D_{\alpha\omega}(A) \subset D(A)$ where D(A) is the derived set of A
- (ii) If $A \subset B$, then $D_{a\omega}(A) \subset D_{a\omega}(B)$
- (iii) $D_{\alpha\omega}(A) \cup D_{\alpha\omega}(B) \subset D_{\alpha\omega}(A \cup B)$
- (iv) $D_{\alpha\omega}(D_{\alpha\omega}(A)) A \subset D_{\alpha\omega}(A)$
- $(\mathbf{v}) \qquad D_{\alpha\omega}(A \cup D_{\alpha\omega}(A)) \subset A \cup D_{\alpha\omega}(A)$

Proof.

(i) It suffices to observe that every open set is $\alpha\omega$ - open.

(iii) It is an immediate consequence of (ii).

(iv) If $x \in D_{\alpha\omega}(D_{\alpha\omega}(A)) - A$ and U is a $\alpha\omega$ -open set containing x, then $U \cap (D_{\alpha\omega}(A) - \{x\}) = \varphi$. Let $y \in U \cap (D_{\alpha\omega}(A) - \{x\})$. Then since $y \in D_{\alpha\omega}(A)$

and $y \in U$, $U \cap (A - \{y\}) = \varphi$. Let $Z \in U \cap (A - \{y\})$. Then $Z \in A$ and $x \in A$. Hence $U \cap (A - \{x\}) = 6 \varphi$. Therefore $x \in D_{\alpha\omega}(A)$.

(v) Let $x \in D_{\alpha\omega}(A \cup D_{\alpha\omega}(A))$. If $x \in A$, the result is obvious. So let $x \in$

 $D_{a\omega}(A \cup D_{a\omega}(A)) - A$, then for $a\omega$ -open set U containing $x, U \cap (A \cup D_{a\omega}(A) - \{x\}) = \varphi$. Thus $U \cap (A - \{x\}) = \varphi$. Thus $U \cap (A - \{x\}) = \varphi$. Thus $U \cap (A - \{x\}) = \varphi$. Hence $x \in D_{a\omega}(A)$. Therefore, in any case $D_{a\omega}(A \cup D_{a\omega}(A)) \subset A \cup D_{a\omega}(A)$.

In general the converse of (i) may not be true by the following Example.

Example 3.3. Let $X = \{a, b, c\}$ with topology $\tau = \{X, \varphi, \{a, b\}\}$. Thus $\alpha \omega O(X) = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Take $A = \{a, b\}$, we obtain D(A) does not contained in $D_{\alpha\omega}(A)$. **Theorem 3.4.** For any subset A of a space X, $cl_{\alpha\omega}(A) = A \cup D_{\alpha\omega}(A)$.

Proof. Since $D_{a\omega}(A) \subset cl_{a\omega}(A)$, $A \cup D_{a\omega}(A) \subset cl_{a\omega}(A)$. On the other hand, let $x \in cl_{a\omega}(A)$. If $x \in A$, then the proof is complete. If $x \in A$, then each $a\omega$ - open set U containing x intersects A at a point distinct from x. Therefore $x \in D_{a\omega}(A)$. Thus $cl_{a\omega}(A) \subset A \cup D_{a\omega}(A)$ which completes the proof.

Definition 3.5. A point $x \in X$ is said to be a $\alpha\omega$ -interior point of A if there exists a $\alpha\omega$ -open sets U containing x such that $U \subset A$. The set of all $\alpha\omega$ - interior points of A is said to be $\alpha\omega$ -interior of A and is denoted by $int_{\alpha\omega}(A)$.

Theorem 3.6. For subset *A*,*B* of a space *X*, the following statements hold:

- (i) $int_{\alpha\omega}(A)$ is the largest $\alpha\omega$ -open set contained in A.
- (ii) A is $\alpha\omega$ -open if and only if $A = int_{\alpha\omega}(A)$.
- (iii) $\operatorname{int}_{a\omega}(\operatorname{int}_{a\omega}(A)) = \operatorname{int}_{a\omega}(A).$

(iv)
$$\operatorname{int}_{\alpha\omega}(A) = A - D_{\alpha\omega}(X - A).$$

(v)
$$X-\operatorname{int}_{a\omega}(A) = \operatorname{cl}_{a\omega}(X-A).$$
 (vi) $X-\operatorname{cl}_{a\omega}(A) = \operatorname{int}_{a\omega}(X-A).$

- (vii) $A \subset B$, then $int_{\alpha\omega}(A) \subset int_{\alpha\omega}(B)$.
- (viii) $\operatorname{int}_{a\omega}(A) \cup \operatorname{int}_{a\omega}(B) \subset \operatorname{int}_{a\omega}(A \cup B).$

Proof.

(iv) If $x \in A - D_{a\omega}(X - A)$, then $x \in D_{a\omega}(X - A)$ and so there exists a $a\omega$ open set U containing x such that $U \cap (X - A) = \varphi$. Then $x \in U \subset A$ and hence $x \in int_{a\omega}(A)$, i.e., $A - D_{a\omega}(X - A) \subset int_{a\omega}(A)$. On the other hand, if $x \in int_{a\omega}(A)$, then $x \in D_{a\omega}(X - A)$. Since $int_{a\omega}(A)$ is $a\omega$ - open and $int_{a\omega}(A) \cap (X - A) = \varphi$. Hence $int_{a\omega}(A) = A - D_{a\omega}(X - A)$. (v) $X - int_{a\omega}(A) = X - (A - D_{a\omega}(X - A)) = (X - A) \cup D_{a\omega}(X - A) = \varphi$

 $\operatorname{cl}_{\alpha\omega}(X-A).$

Definition 3.7. For a subset A of a space X, $b_{\alpha\omega}(A) = A - int_{\alpha\omega}(A)$ is said to be $\alpha\omega$ -border of A.

Theorem 3.8. For a subset *A* of a space *X*, the following statements hold:

(1) $b_{\alpha\omega}(A) \subset b(A)$, where b(A) denotes the border of *A*.

(2)
$$A = int_{\alpha\omega}(A) \cup b_{\alpha\omega}(A).$$

(3)
$$\operatorname{int}_{a\omega}(A) \cap b_{a\omega}(A) = \varphi$$
.

(4) A is a $\alpha\omega$ -open set if and only if $b_{\alpha\omega}(A) = \varphi$.

(5)
$$b_{\alpha\omega}(\operatorname{int}_{\alpha\omega}(A)) = \varphi.$$

(6)
$$\operatorname{int}_{\alpha\omega}(b_{\alpha\omega}(A)) = \varphi$$

(7)
$$b_{\alpha\omega}(b_{\alpha\omega}(A)) = b_{\alpha\omega}(A).$$

(8)
$$b_{\alpha\omega}(A) = A \cap \operatorname{cl}_{\alpha\omega}(X - A).$$

(9)
$$b_{\alpha\omega}(A) = D_{\alpha\omega}(X-A).$$

Proof.

(6) If $x \in int_{a\omega}(b_{a\omega}(A))$, then $x \in b_{a\omega}(A)$. On the other hand, since $b_{a\omega}(A) \subset A$, $x \in int_{a\omega}(b_{a\omega}(A)) \subset int_{a\omega}(A)$. Hence $x \in int_{a\omega}(A) \cap b_{a\omega}(A)$ which contradicts (3). Thus $int_{a\omega}(b_{a\omega}(A)) = \varphi$.

(8)
$$b_{\alpha\omega}(A) = A - \operatorname{int}_{\alpha\omega}(A) = A - (X - \operatorname{cl}_{\alpha\omega}(X - A)) = A \cap \operatorname{cl}_{\alpha\omega}(X - A).$$

(9) $b_{\alpha\omega}(A) = A - \operatorname{int}_{\alpha\omega}(A) = A - (A - D_{\alpha\omega}(X - A)) = D_{\alpha\omega}(X - A).$ **Definition 3.9.** For a subset *A* of a space *X*, $Fr_{\alpha\omega}(A) = \operatorname{cl}_{\alpha\omega}(A) - \operatorname{int}_{\alpha\omega}(A)$ is said to be $\alpha\omega$ -frontier of *A*.

724

Theorem 3.10. For a subset *A* of a space *X*, the following statements hold:

(1) $Fr_{a\omega}(A) \subset Fr(A)$, where Fr(A) denotes the frontier of A.

(2)
$$\operatorname{cl}_{\alpha\omega}(A) = \operatorname{int}_{\alpha\omega}(A) \cup Fr_{\alpha\omega}(A)$$

(3)
$$\operatorname{int}_{\alpha\omega}(A) \cap Fr_{\alpha\omega}(A) = \varphi.$$

$$(4) \qquad b_{\alpha\omega}(A) \subset Fr_{\alpha\omega}(A).$$

(5)
$$Fr_{\alpha\omega}(A) = b_{\alpha\omega}(A) \cup D_{\alpha\omega}(A).$$

(6) *A* is a $\alpha\omega$ -open set if and only if $Fr_{\alpha\omega}(A) = D_{\alpha\omega}(A)$.

(7)
$$Fr_{\alpha\omega}(A) = \operatorname{cl}_{\alpha\omega}(A) \cap \operatorname{cl}_{\alpha\omega}(X - A).$$

(8)
$$Fr_{\alpha\omega}(A) = Fr_{\alpha\omega}(X - A)$$

(9) $Fr_{\alpha\omega}(A)$ is $\alpha\omega$ - closed.

(10)
$$Fr_{\alpha\omega}(Fr_{\alpha\omega}(A)) \subset Fr_{\alpha\omega}(A).$$

(11)
$$Fr_{\alpha\omega}(\operatorname{int}_{\alpha\omega}(A)) \subset Fr_{\alpha\omega}(A).$$

(12)
$$Fr_{\alpha\omega}(\operatorname{cl}_{\alpha\omega}(A)) \subset Fr_{\alpha\omega}(A).$$

(13)
$$\operatorname{int}_{\alpha\omega}(A) = A - Fr_{\alpha\omega}(A).$$

Proof.

(2)
$$\operatorname{int}_{\alpha\omega}(A) \cup Fr_{\alpha\omega}(A) = \operatorname{int}_{\alpha\omega}(A) \cup (\operatorname{cl}_{\alpha\omega}(A) - \operatorname{int}_{\alpha\omega}(A)) = \operatorname{cl}_{\alpha\omega}(A).$$

(3)
$$\operatorname{int}_{a\omega}(A) \cap Fr_{a\omega}(A) = \operatorname{int}_{a\omega}(A) \cap (\operatorname{cl}_{a\omega}(A) - \operatorname{int}_{a\omega}(A)) = \varphi.$$

(5) Since $int_{a\omega}(A) \cup Fr_{a\omega}(A) = int_{a\omega}(A) \cup b_{a\omega}(A) \cup D_{a\omega}(A), Fr_{a\omega}(A) = b_{a\omega}(A) \cup D_{a\omega}(A)$

 $D_{a\omega}(A).$ (7) $Fr_{a\omega}(A) = cl_{a\omega}(A) - int_{a\omega}(A) = cl_{a\omega}(A) \cap cl_{a\omega}(X - A).$

(9)
$$\operatorname{cl}_{\alpha\omega}(Fr_{\alpha\omega}(A)) = \operatorname{cl}_{\alpha\omega}(\operatorname{cl}_{\alpha\omega}(A) \cap \operatorname{cl}_{\alpha\omega}(X - A)) \subset \operatorname{cl}_{\alpha\omega}(\operatorname{cl}_{\alpha\omega}(A)) \cap \operatorname{cl}_{\alpha\omega}(A)$$

 $cl_{\alpha\omega}(X - A)) = Fr_{\alpha\omega}(A)$. Hence $Fr_{\alpha\omega}(A)$ is $\alpha\omega$ - closed.

(10)
$$Fr_{\alpha\omega}(Fr_{\alpha\omega}(A)) = \operatorname{cl}_{\alpha\omega}(Fr_{\alpha\omega}(A)) \cap \operatorname{cl}_{\alpha\omega}(X - Fr_{\alpha\omega}(A)) \subset \operatorname{cl}_{\alpha\omega}(Fr_{\alpha\omega}(A)) =$$

 $Fr_{\alpha\omega}(A).$

(12)
$$Fr_{a\omega}(\operatorname{cl}_{a\omega}(A)) = \operatorname{cl}_{a\omega}(\operatorname{cl}_{a\omega}(A)) - \operatorname{int}_{a\omega}(\operatorname{cl}_{a\omega}(A)) = \operatorname{cl}_{a\omega}(A) - \operatorname{int}_{a\omega}(A) - \operatorname{int}_{a\omega}(A) = Fr_{a\omega}(A)$$
.

(13)
$$A - Fr_{a\omega}(A) = A - (\operatorname{cl}_{a\omega}(A) - \operatorname{int}_{a\omega}(A)) = \operatorname{int}_{a\omega}(A)$$

In general the converse of (1) and (4) may not be true by the following Exam-

ple.

Example 3.11. Let $X = \{a, b, c\}$ with topology $\tau = \{X, \varphi, \{a, b\}\}$. If $A = \{a\}$, then Fr(A) does not contained in $Fr_{\alpha\omega}(A)$ and if $B = \{a, b\}$, then $Fr_{\alpha\omega}(B)$ does not contained in $b_{\alpha\omega}(B)$.

Definition 3.12. [6] A function $f: (X,\tau) \to (Y,\sigma)$ is $\alpha\omega$ -continuous if $f^{-1}(V) \in \alpha\omega O(X)$ for every $V \in O(Y)$.

In the following theorem $J\alpha\omega$. *C*. denote the set of points *x* of *X* for which a function $f: (X, \tau) \to (Y, \sigma)$ is not $\alpha\omega$ -continuous.

Theorem 3.13. $Ja\omega.C.$ is identical with the union of the $a\omega$ -frontiers of the inverse images of $a\omega$ -open sets containing f(x).

Proof. Suppose that *f* is not $a\omega$ -continuous at a point *x* of *X*. Then there exists an open set $V \subset Y$ containing f(x) such that f(U) is not a subset of *V* for every $U \in a\omega O(X)$ containing *x*. Hence we have $U \cap (X - f^{-1}(V)) = \varphi$ for every $U \in a\omega O(X)$ containing *x*. It follows that $x \in cl_{a\omega}(X - f^{-1}(A))$. We also have $x \in f^{-1}(V) \subset cl_{a\omega}(f^{-1}(A))$. This means that $x \in Fr_{a\omega}(f^{-1}(V))$. Now, let *f* be $a\omega$ -continuous at $x \in X$ and $V \subset Y$ be any open set containing f(x).

Then $x \in f^{-1}(V)$ is a $\alpha\omega$ -open set of *X*. Thus $x \in int_{\alpha\omega}(f^{-1}(V))$ and therefore $x \in /Fr_{\alpha\omega}(f^{-1}(V))$ for every open set *V* containing *f*(*x*).

Definition 3.14. For a subset A of a space X, $Ext_{a\omega}(A) = int_{a\omega}(X - A)$ is said to be $a\omega$ -exterior of A.

Theorem 3.15. For a subset *A* of a space *X*, the following statements hold:

(1) $Ext(A) \subset Ext_{\alpha\omega}(A)$, where Ext(A) denotes the exterior of *A*.

- (2) $Ext_{\alpha\omega}(A)$ is $\alpha\omega$ open.
- (3) $Ext_{a\omega}(A) = int_{a\omega}(X A) = X cl_{a\omega}(A).$
- (4) $Ext_{a\omega}(Ext_{a\omega}(A)) = int_{a\omega}(cl_{a\omega}(A)).$
- (5) If $A \subset B$, then $Ext_{a\omega}(A) \supset Ext_{a\omega}(B)$.
- (6) $Ext_{\alpha\omega}(A \cup B) \subset Ext_{\alpha\omega}(A) \cup Ext_{\alpha\omega}(B).$
- (7) $Ext_{\alpha\omega}(X) = \varphi$.
- (8) $Ext_{\alpha\omega}(\varphi) = X.$
- (9) $Ext_{\alpha\omega}(A) = Ext_{\alpha\omega}(X Ext_{\alpha\omega}(A)).$
- (10) $\operatorname{int}_{a\omega}(A) \subset Ext_{a\omega}(Ext_{a\omega}(A)).$
- (11) $X = int_{\alpha\omega}(A) \cup Ext_{\alpha\omega}(A) \cup Fr_{\alpha\omega}(A).$

Proof.

(4)
$$Ext_{a\omega}(Ext_{a\omega}(A)) = Ext_{a\omega}(X - cl_{a\omega}(A)) = int_{a\omega}(X - (X - cl_{a\omega}(A))) =$$

 $int_{\alpha\omega}(cl_{\alpha\omega}(A)).$

 $\begin{array}{ll} (9) & Ext_{a\omega}(X - Ext_{a\omega}(A)) = Ext_{a\omega}(X - \operatorname{int}_{a\omega}(X - A)) = \operatorname{int}_{a\omega}(X - (X - \operatorname{int}_{a\omega}(X - A))) = \operatorname{int}_{a\omega}(\operatorname{int}_{a\omega}(X - A)) = \operatorname{int}_{a\omega}(X - A) = Ext_{a\omega}(A). \\ (10) & \operatorname{int}_{a\omega}(A) \subset \operatorname{int}_{a\omega}(\operatorname{cl}_{a\omega}(A)) = \operatorname{int}_{a\omega}(X - \operatorname{int}_{a\omega}(X - A)) = \operatorname{int}_{a\omega}(X - Ext_{a\omega}(A)) = \end{array}$

 $Ext_{\alpha\omega}(Ext_{\alpha\omega}(A)).$

In general the converse of (1) and (6) may not be true by the following Exam-

ple.

Example 3.16. Let $X = \{a, b, c\}$ with topology $\tau = \{X, \varphi, \{a, b\}\}$. If $A = \{a\}$ and $B = \{b\}$, then $Ext_{a\omega}(A)$ does not contained in Ext(A), $Ext_{a\omega}(A \cup B)$ $6 = Ext_{a\omega}(A) \cup Ext_{a\omega}(B)$.

Definition 3.17. Let *X* be a topological space. A set $A \subset X$ is said to be $\alpha\omega$ -saturated if for every $x \in A$ it follows $cl_{\alpha\omega}(\{x\}) \subset A$. The set of all $\alpha\omega$ saturated sets in *X* we denote by $B_{\alpha\omega}(X)$.

Theorem 3.18. Let *X* be a topological space. Then $B_{\alpha\omega}(X)$ is a complete

Boolean set algebra.

Proof. We will prove that all the unions and complements of elements of $B_{\alpha\omega}(X)$ are members of $B_{\alpha\omega}(X)$. Obviously, only the proof regarding the complements is not trivial. Let $A \in B_{\alpha\omega}(X)$ and suppose that $cl_{\alpha\omega}(\{x\})$ does not contained in X - A for some $x \in X - A$. Then there exists $y \in A$ such that $y \in cl_{\alpha\omega}(\{x\})$. It follows that x, y have no disjoint neighbourhoods. Then $x \in cl_{\alpha\omega}(\{y\})$. But this is a contradiction, because by the definition of $B_{\alpha\omega}(X)$ we have $cl_{\alpha\omega}(\{y\}) \subset A$. Hence, $cl_{\alpha\omega}(\{x\}) \subset X - A$ for every $x \in X - A$, which implies $X - A \in B_{\alpha\omega}(X)$.

Corollary 3.19. $B_{\alpha\omega}(X)$ contains every union and every intersection of $\alpha\omega$ closed and $\alpha\omega$ -open sets in *X*.

3 Grills: $\alpha\omega(\theta)$ -convergence and $\alpha\omega(\theta)$ - adherence

Definition 4.1. A grill G on a topological space X is said to

(i) $\alpha\omega(\theta)$ -adhere at $x \in X$ if for each $U \in \alpha\omega O(x)$ and each $G \in G$, $cl_{\alpha\omega}(U) \cap G = \varphi$,

(ii) $\alpha\omega(\theta)$ -converge to a point $x \in X$ if for each $U \in \alpha\omega O(x)$, there is some $G \in G$ such that $G \subseteq cl_{\alpha\omega}(U)$ (in this case we shall also say that G is

 $\alpha\omega(\theta)$ -convergent to *x*).

Remark 4.2. It at once follows that a grill G is $\alpha\omega(\theta)$ -convergent to a point

n o $x \in X$ if and only if G contains the collection $cl_{a\omega}(U) : U \in a\omega O(x)$.

Definition 4.3. A filter F on a topological space X is said to $\alpha\omega(\theta)$ - adhere at $x \in X$ ($\alpha\omega(\theta)$ -converge to $x \in X$) if for each $F \in F$ and each $U \in \alpha\omega O(x)$,

 $F \cap cl_{\alpha\omega}(U) = \varphi$ (resp. to each $U \in \alpha \omega O(x)$, there corresponds $F \in F$ such that $F \subseteq cl_{\alpha\omega}(U)$).

Definition 4.4. [10] If G is a grill (or a filter) on a space X, then the sec-

n tion of G, denoted by secG is given by secG = $A \subseteq X : A \cap G = 6 \varphi$, for all o $G \in G$.

Lemma 4.5. [10]

(a) For any grill (filter) G on a space *X*, secG is a filter(resp. grill) on *X*.

(b) If F and G are respectively a filter and a grill on a space X with $F \subseteq G$, then there is an ultrafilter U on X such that $F \subseteq U \subseteq G$.

Theorem 4.6. If a grill G on a topological space X, $\alpha\omega(\theta)$ -adheres at some point $x \in X$, then G is $\alpha\omega(\theta)$ convergent to x.

Proof. Let a grill G on *X*, $\alpha\omega(\theta)$ -adhere at $x \in X$. Then for each $U \in \alpha\omega O(x)$ and each $G \in G$, $cl_{\alpha\omega}(U) \cap G$ 6= φ so that $cl_{\alpha\omega}(U) \in secG$, for each $U \in \alpha\omega O(x)$ and hence $X - cl_{\alpha\omega}(U) \in G/$. Then $cl_{\alpha\omega}(U) \in G$ (as G is a grill and $X \in G$), for each $U \in \alpha\omega O(x)$. Hence G must $\alpha\omega(\theta)$ -converge to *x*. **Notation 4.7.** Let *X* be a topological space. Then for any $x \in X$, we have

the following notation:

 $G(\alpha\omega(\theta), x) = A \subseteq X : x \in \alpha\omega(\theta) - cl(A)$

n o

n o $secG(\alpha\omega(\theta),x) = A \subseteq X : A \cap G = 6 \varphi$, for all $G \in G(\alpha\omega(\theta),x)$

In the next two theorems, we characterize the $\alpha\omega(\theta)$ -adherence and $\alpha\omega(\theta)$ - convergence of grills in terms of the above notations.

Theorem 4.8. A grill G on a space X, $\alpha\omega(\theta)$ -adheres to a point $x \in X$ if and only if $G \subseteq G(\alpha\omega(\theta), x)$.

Proof. A grill G on a space *X*, $\alpha\omega(\theta)$ -adheres at $x \in X$.

 $\Rightarrow cl_{\alpha\omega}(U) \cap G = \varphi$, for all $U \in \alpha \omega O(x)$ and all $G \in G$

 $\Rightarrow x \in \alpha \omega(\theta) \text{-} cl(G), \text{ for all } G \in G$ $\Rightarrow G \in G(\alpha \omega(\theta), x), \text{ for all } G \in G$

 \Rightarrow G \subseteq G($\alpha\omega(\theta), x$).

Conversely, let $G \subseteq G(\alpha \omega(\theta), x)$. Then for all $G \in G$, $x \in \alpha \omega(\theta)$ -cl(*G*), so that for all $U \in \alpha \omega O(x)$ and for all $G \in G$, $cl_{\alpha\omega}(U) \cap G = \varphi$. Hence G is $\alpha \omega(\theta)$ -adheres at x.

Theorem 4.9. A grill G on a topological space X is $\alpha\omega(\theta)$ -convergent to a point x of X if and only if $\sec G(\alpha\omega(\theta), x) \subseteq G$.

Proof. Let G be a grill on *X*, $\alpha\omega(\theta)$ -converging to $x \in X$. Then for each

 $U \in \alpha \omega O(x)$ there exists $G \in G$ such that $G \subseteq cl_{\alpha \omega}(U)$ and hence

 $cl_{\alpha\omega}(U) \in G$ for each $U \in \alpha\omega O(x)$ (1)

Now, $B \in \sec G(\alpha \omega(\theta), x) \Rightarrow X - B \in G/(\alpha \omega(\theta), x) \Rightarrow x \in /\alpha \omega(\theta) - \operatorname{cl}(X - B) \Rightarrow$ there exists $U \in \alpha \omega O(x)$ such that $\operatorname{cl}_{\alpha \omega}(U) \cap (X - B) = \varphi \Rightarrow \operatorname{cl}_{\alpha \omega}(U) \subseteq B$, where

 $U \in a\omega O(x) \Rightarrow B \in G$ (by (1)). Conversely, let if possible, G not to $a\omega(\theta)$ -converge to x. Then for some $U \in a\omega O(x)$, $cl_{a\omega}(U) \in G/$ and hence $cl_{a\omega}(U) \in / secG(a\omega(\theta), x)$. Thus for some $A \in G(a\omega(\theta), x)$,

 $A \cap cl_{\alpha\omega}(U) = \varphi(2)$

But $A \in G(a\omega(\theta), x) \Rightarrow x \in a\omega(\theta)$ -cl $(A) \Rightarrow cl_{a\omega}(U) \cap A = 6 \varphi$, contradicting (2).

Definition 4.10. A non empty subset A of a topological space X is called $\alpha\omega$ -closed relative to X if for every cover U of A by $\alpha\omega$ -open sets of X, there

n o exists a finite subset U_0 of U such that $A \subseteq \bigcup cl_{\alpha\omega}(U) : U \in U_0$. If, in addition, A = X, then X is called a $\alpha\omega$ -closed space.

Theorem 4.11. A subset A of a topological space X is $\alpha\omega$ -closed relative to

X if and only if every grill G on *X* with $A \in G$, $a\omega(\theta)$ -converges to a point in *A*. **Proof.** Let *A* be $a\omega$ -closed relative to *X* and G a grill on *X* satisfying $A \in G$ such that G does not $a\omega(\theta)$ -converges to any $a \in A$. Then to each $a \in A$, there corresponds some $U_a \in a\omega O(a)$ such that $cl_{a\omega}(U_a) \in G/$. Now $\{U_a : a \in A\}$ is a cover

of A by $\alpha\omega$ -open sets of X. Then $A \subseteq \bigcup_{i=1}^{n} \operatorname{cl}_{\alpha\omega}(U_{a_i}) = U$ (say), for some positive

integer *n*. Since G is a grill, $U \in G/$ and hence $A \in G/$, which is a contradiction.

Conversely, let A be not $\alpha\omega$ -closed relative to X. Then for some cover U =

{ U_{α} : $\alpha \in \Lambda$ } of A by $\alpha \omega$ -open sets of X, $F = A - \bigcup_{\alpha \in \Lambda 0} cl_{\alpha \omega}(U_{\alpha})$: Λ_0 is a

o finite subset of Λ is a filterbase on X. Then the family F can be extended to an ultrafilter F^* on X. Then F^* is a grill on X with $A \in F^*$. Now for each $x \in A$, there must exist $\beta \in \Lambda$ such that $x \in U_\beta$, as U is a cover of A. Then for any $G \in F^*$, $G \cap (A - cl_{\alpha\omega}(U_\beta)) = \varphi$, so that G does not contained in $cl_{\alpha\omega}(U_\beta)$, for all $G \in G$. Hence F^* cannot $\alpha\omega(\theta)$ -converge to any point of A. The contradiction

proves the desired result.

References

[1] Choquent, Sur les notions de filtre et grille, *Comptes Rendus Acad. Sci.*

Paris, 224, (1947), 171-173.

[2] N. Levine, semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70(1963), 36-41.

[3] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre continuous and weak pre continuous mappings, *Proc. Math. Phys. Soc.*, Egypt, 53 (1982), 47-53.

[4] M. N. Mukherjee and B. Roy, *p*-closed topological spaces in terms of grills, *Hacettepe Journal of Mathematics and Statistics*, Vol. 35(2), (2006), 147154.

[5] O. Njastad, On some classes of nearly open sets, *Pacific J. Math.*, 15(1965), 961-970.

[6] M. Parimala , R. Udhayakumar , R. Jeevitha , V. Biju, On $\alpha\omega$ -closed sets in topological spaces, *International Journal of Pure and Applied Mathematics*, 115(5), 2017, 1049-1056.

[7] M. Parimala, M. Karthika, F. Smarandache and S. Broumi, On *αω*- closed sets and its connectedness in terms of neutrosophic topological spaces, *International Journal of neutrosophic Science (IJNS)*,2(2)(2020), 82-88.

[8] M. Parimala, C. Ozel, R Udhayakumar, On Ultra Separation Axioms via $\alpha\omega$ -Open sets, Advances in Algebra and Analysis, (2018) 97-102. Springer (book series)

[9] P. Sundaram and M. Shrik John, On $\cap g$ -closed sets in topology, *Acta Ciencia Indica*, 4(2000), 389-392.

[10] W. J. Thron, Proximity Structure and grills, *Math. Ann.*, (1973), 35-62. [11] M.K.R.S. Veera Kumar, $\cap g$ -locally closed sets and $\cap GLC$ -functions, *Indian J. Math.*, 43(2)(2001), 231-247

[12] N.V. Velicko, *H*-closed topological spaces, *Amer. Math. Soc. Transl.*,

78(1968), 103-118.

[13] S. Willard, General Topology, *Addison - Wesley*, Reading, Mass, USA

(1970).