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Abstract 

On this paper, we introduce idea of Cartesian product of 𝜋-𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝐴𝑛𝑡𝑖 𝜔 − 𝑄 −
𝑓𝑢𝑧𝑧𝑦 𝑠𝑒𝑡𝑠  and discussed with various algebraic aspects. We show that essential Algebraic systems 

on Direct Product of  Complex Anti 𝜔 − 𝑄 −Fuzzy Subrings and their results. 
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I Introduction 

The idea of fuzzy sets turned into added means by Zadeh [10] in 1965. Bhakat S K et.al.[1], defined 

the belief of Fuzzy subrings and ideals redefined in 1996. In 1990, Fuzzy subgroups and anti Fuzzy subgroups 

were initiated by Biswas R[2]. Buckley J J[3], commenced the idea of fuzzy complex numbers in 1989. 

Muhammad et.al[4], proposed the idea of On a few characterization of Q-complex fuzzy sub-rings in 2021. In 

2002, commenced new concept of  Complex fuzzy sets by Ramot D et.al[5]. Solairaju A and Nagarajan R [8] 
explored a new structure and construction of 𝑄-fuzzy groups in 2009.  Sither Selvam P M et al. [9] described 

the notion of  some properties of anti Q-fuzzy subgroups in 2014. Rasuli R [7] discussed 𝑄-fuzzy subring 

with respect to 𝑡-norm in 2018. Zhang G Q [11], explored a new structure and construction of operation 

properties and δ-equalities of complex fuzzy sets. In 2003, Complex fuzzy logic brought by way of Ramot D 

et.al[6]. 
In this paper, we define the Cartesian product of 𝜋-complex anti 𝜔 − 𝑄 − fuzzy sets and prove that 

the results. We also define Cartesian product of  complex anti 𝜔 −  𝑄 − fuzzy subrings and discuss its 

properties. 

II Preliminaries 

Definition 2.1 [10]:  

A fuzzy set  𝐴 of a nonempty set 𝑃 is a mapping  

𝐴 ∶ 𝑃 → [0, 1]. 

Definition 2.2 [1]:  

A fuzzy set 𝐴 of a ring 𝑆 is called a FSR of 𝑆 if 

1. 𝐴(𝑚 − 𝑛) ≥ min{𝐴(𝑚), 𝐴(𝑛)},       ∀ 𝑚, 𝑛 ∈ 𝑆  

2. 𝐴(𝑚𝑛) ≥ min{𝐴(𝑚), 𝐴(𝑛)},       ∀ 𝑚, 𝑛 ∈ 𝑆 
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Definition 2.3 [8]:  

Let 𝑄 and 𝑆 be any two sets. Then the mapping 𝐴: 𝑆 × 𝑄 → [0,1] is called a 𝑄-Fuzzy set in 𝑆 

 

Definition 2.4 [7]:   

Let  𝑄-Fuzzy set 𝐴 of ring 𝑆 is said to be 𝑄-Fuzzy subring if the following conditions are,           

1. 𝐴(𝑚 − 𝑛, 𝑞) ≥ min{𝐴(𝑚, 𝑞), 𝐴(𝑛, 𝑞)}, for all 𝑚, 𝑛 ∈ 𝑆 and 𝑞 ∈ 𝑄. 
2. 𝐴(𝑚𝑛, 𝑞) ≥ min{𝐴(𝑚, 𝑞), 𝐴(𝑛, 𝑞)}, for all 𝑚, 𝑛 ∈ 𝑆 and 𝑞 ∈ 𝑄  

 

Definition 2.5 [5]:  

A complex fuzzy set 𝐴 of universe of discourse 𝑃 is identify with the membership function 𝜃𝐴(𝑚) =
𝜂𝐴(𝑚)𝑒𝑖𝜑𝐴(𝑚) and is defined as  

𝜃𝐴: 𝑃 → {𝑧 ∈ 𝐶: |𝑧| ≤ 1} 

This membership function receive all membership value from the unit disc on plane, where 𝑖 = √−1 , both 

𝜂𝐴(𝑚) and 𝜑𝐴(𝑚) are real valued such that 𝜂𝐴(𝑚) ∈ [0,1] and 𝜑𝐴(𝑚) ∈ [0,2𝜋]. 
 

Definition 2.6 [11]: 

Let 𝐴 and 𝐵 two  complex fuzzy sets of set 𝑃. The Cartesian product of complex fuzzy sets  𝐴 and 𝐵 

is defined as 

𝜃𝐴×𝐵(𝑚, 𝑛) = 𝜂𝐴×𝐵(𝑚, 𝑛)𝑒𝑖𝜑𝐴×𝐵(𝑚,𝑛) = min {𝜂𝐴(𝑚), 𝜂𝐵(𝑛)}𝑒𝑖min{𝜑𝐴(𝑚),𝜑𝐵(𝑛)} 

Definition 2.7 [2]:  

Let 𝐴 be fuzzy subset of a group 𝐻. Then 𝐴 is said to an anti-fuzzy subgroup if 𝐴(𝑢−1𝑣) ≤
max{𝐴(𝑢), 𝐴(𝑣)},       for all 𝑢, 𝑣 ∈ 𝐻. 

Definition 2.8 [9]:   

A function 𝐴 ∶ 𝐻 × 𝑄 ⟶ [0,1] is a anti-QFSG of a group 𝐻 if 𝐴(𝑢𝑣−1, 𝑞) ≤
max{𝐴(𝑢, 𝑞), 𝐴(𝑣, 𝑞)}, for all 𝑢, 𝑣 ∈ 𝐻 and 𝑞 ∈ 𝑄. 

III Fundamental Algebraic Structures on Direct Product of  Complex anti 𝝎 − 𝑸 −Fuzzy Subrings 

In this content, We use the concept of complex anti 𝜔 − 𝑄 −fuzzy subring to outline direct product of 𝜋-

complex anti 𝜔 − 𝑄 −fuzzy subring . We prove that Cartesian product of two complex anti 𝜔 − 𝑄 −fuzzy 

subring is complex anti 𝜔 − 𝑄 −fuzzy subring and illustrate their results. 

Definition: 4.1  

 Let S and Q be any two nonempty sets and 𝜔 ∈ [0,1] and A be a  𝑄 − Fuzzy subset of a set 𝐺. The 

fuzzy set Aωof 𝐺 is called the Anti ω − Q − Fuzzy subset of 𝐺 is defined by  

Aω (𝜃, 𝑞) = 𝑚𝑎𝑥{𝐴(𝜃, 𝑞), 𝜔}, ∀ 𝜃 ∈ 𝑆 𝑎𝑛𝑑 𝑞 ∈ 𝑄. 

Definition 4.2: 

 Let 𝐴 and 𝐵 be any two 𝜋-complex anti 𝜔 − 𝑄 −fuzzy sets of sets 𝑆1 and 𝑆2 respectively. The 

Cartesian product of 𝜋-complex anti 𝜔 − 𝑄 − fuzzy sets 𝐴𝜔 and 𝐵𝜔 is defined as 𝐴𝜔
𝜋 × 𝐵𝜔

𝜋((𝑚, 𝑛), 𝑞) =
max{𝐴𝜔

𝜋(𝑚, 𝑞), 𝐵𝜔
𝜋(𝑛, 𝑞)} , for all 𝑚 ∈ 𝑆1𝑎𝑛𝑑 𝑛 ∈ 𝑆2 and 𝑞 ∈ 𝑄 

Note:  

Let 𝐴𝜔 and 𝐵𝜔 be two 𝜋-𝑄- complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑆1 and 𝑆2, respectively. Then 

𝐴𝜔 × 𝐵𝜔 is 𝜋-anti 𝜔 −  𝑄 − fuzzy subring of 𝑆1 × 𝑆2. 

Definition 4.3  

Let 𝐴𝜔 and 𝐵𝜔 two  complex anti 𝜔 − 𝑄 −fuzzy subring of sets 𝑆1 and 𝑆2. The Cartesian product of  

complex anti 𝜔 −  𝑄 − fuzzy subrings 𝐴𝜔 and 𝐵𝜔 is defined by a function 

𝜃𝐴𝜔×𝐵𝜔 ((𝑚, 𝑛), 𝑞) = 𝜂𝐴𝜔×𝐵𝜔 ((𝑚, 𝑛), 𝑞)𝑒𝑖𝜑𝐴𝜔×𝐵𝜔 ((𝑚,𝑛),𝑞)  

= max {𝜂𝐴𝜔(𝑚, 𝑞), 𝜂𝐵𝜔(𝑛, 𝑞)}𝑒𝑖max{𝜑𝐴𝜔(𝑚,𝑞),𝜑𝐵𝜔(𝑛,𝑞)} 

Theorem 4.4:  

Let 𝐴𝜔 and 𝜂𝐵𝜔 be two complex anti 𝜔 − 𝑄 −fuzzy subrings of 𝑆1 and 𝑆2 respectively. Then 𝐴𝜔 ×
𝐵𝜔  is  complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑆1 × 𝑆2. 
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Proof: Let 𝑚, 𝑥 ∈ 𝑆1 and 𝑛, 𝑦 ∈ 𝑆2 be an elements and 𝑞 ∈ 𝑄. Then (𝑚, 𝑛), (𝑥, 𝑦) ∈ 𝑆1 × 𝑆2. Consider, 

𝜃𝐴𝜔×𝐵𝜔 ((𝑚, 𝑛) − (𝑥, 𝑦), 𝑞) = 𝜃𝐴𝜔×𝐵𝜔 ((𝑚 − 𝑥, 𝑛 − 𝑦), 𝑞)  

= 𝜂𝐴𝜔×𝐵𝜔 ((𝑚 − 𝑥, 𝑛 − 𝑦), 𝑞)𝑒𝑖𝜑𝐴𝜔×𝐵𝜔 ((𝑚−𝑥,𝑛−𝑦),𝑞)  

= max{𝜂𝐴𝜔(𝑚 − 𝑥, 𝑞), 𝜂𝐵𝜔(𝑛 − 𝑦, 𝑞)} 𝑒𝑖max{𝜑𝐴𝜔(𝑚−𝑥,𝑞),𝜑𝐵𝜔(𝑛−𝑦,𝑞)}     

= max{𝜂𝐴𝜔(𝑚 − 𝑥, 𝑞)𝑒𝑖𝜑𝐴𝜔(𝑚−𝑥,𝑞), 𝜂𝐵𝜔(𝑛 − 𝑦, 𝑞)𝑒𝑖𝜑𝐴𝜔(𝑛−𝑦,𝑞)}  

= max{𝜃𝐴𝜔(𝑚 − 𝑥, 𝑞), 𝜃𝐵𝜔(𝑛 − 𝑦, 𝑞)}  

≤ max{max{𝜃𝐴𝜔(𝑚, 𝑞), 𝜃𝐴𝜔(𝑥, 𝑞)} , max{𝜃𝐵𝜔(𝑛, 𝑞), 𝜃𝐵𝜔(𝑦, 𝑞)}}  

= min{max{𝜃𝐴𝜔(𝑚, 𝑞), 𝜃𝐵𝜔(𝑛, 𝑞)} , max{𝜃𝐴𝜔(𝑥, 𝑞), 𝜃𝐵𝜔(𝑦, 𝑞)}}  

Thus, 𝜃𝐴𝜔×𝐵𝜔 ((𝑚, 𝑛) − (𝑥, 𝑦), 𝑞) ≤ max{𝜃𝐴𝜔×𝐵𝜔 ((𝑚, 𝑛), 𝑞), 𝜃𝐴𝜔×𝐵𝜔 ((𝑥, 𝑦), 𝑞)}  

Further, 

𝜃𝐴𝜔×𝐵𝜔 ((𝑚, 𝑛)(𝑥, 𝑦), 𝑞) = 𝜃𝐴𝜔×𝐵𝜔 ((𝑚𝑥, 𝑛𝑦), 𝑞)  

= 𝜂𝐴𝜔×𝐵𝜔 ((𝑚𝑥, 𝑛𝑦), 𝑞)𝑒𝑖𝜑𝐴𝜔×𝐵𝜔 ((𝑚𝑥,𝑛𝑦),𝑞)  

= max{𝜂𝐴𝜔(𝑚𝑥, 𝑞), 𝜂𝐵𝜔(𝑛𝑦, 𝑞)} 𝑒𝑖max{𝜑𝐴𝜔(𝑚𝑥,𝑞),𝜑𝐵𝜔(𝑛𝑦,𝑞)}     

= max{𝜂𝐴𝜔(𝑚𝑥, 𝑞)𝑒𝑖𝜑𝐴𝜔(𝑚𝑥,𝑞), 𝜂𝐵𝜔(𝑛𝑦, 𝑞)𝑒𝑖𝜑𝐴𝜔(𝑛𝑦,𝑞)}  

= max{𝜃𝐴𝜔(𝑚𝑥, 𝑞), 𝜃𝐵𝜔(𝑛𝑦, 𝑞)}  

≤ max{max{𝜃𝐴𝜔(𝑚, 𝑞), 𝜃𝐴𝜔(𝑥, 𝑞)} , max{𝜃𝐵𝜔(𝑛, 𝑞), 𝜃𝐵𝜔(𝑦, 𝑞)}}  

= max{max{𝜃𝐴𝜔(𝑚, 𝑞), 𝜃𝐵𝜔(𝑛, 𝑞)} , max{𝜃𝐴𝜔(𝑥, 𝑞), 𝜃𝐵𝜔(𝑦, 𝑞)}}  

Therefore, 𝜃𝐴𝜔×𝐵𝜔 ((𝑚, 𝑛)(𝑥, 𝑦), 𝑞) ≤ max{𝜃𝐴𝜔×𝐵𝜔 ((𝑚, 𝑛), 𝑞), 𝜃𝐴𝜔×𝐵𝜔 ((𝑥, 𝑦), 𝑞)}  

Thus conclude the proof. 

Corollary 4.5:  

Let 𝐴𝜔
1, 𝐴𝜔

2 … 𝐴𝜔
𝑛 be complex anti 𝜔 − 𝑄 −fuzzy subrings of 𝑆1, 𝑆2, … 𝑆𝑛 respectively. Then 

𝐴𝜔
1 × 𝐴𝜔

2 × … ×  𝐴𝜔
𝑛 is complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑆1 × 𝑆2 × … × 𝑆𝑛. 

Remark 4.6:  

Let 𝐴𝜔
1𝑎𝑛𝑑 𝐴𝜔

2 be two complex anti 𝜔 − 𝑄 −fuzzy subrings of 𝑆1 and 𝑆2 respectively and 

𝐴𝜔
1𝑎𝑛𝑑 𝐴𝜔

2 be complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑆1 × 𝑆2. Then it not compulsory both 𝐴𝜔
1𝑎𝑛𝑑 𝐴𝜔

2 

should be complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑆1 and 𝑆2 respectively. 

Example 4.7: 

Let 𝑍2 = {0,1} and 𝑆 = {𝑒, 𝑎, 𝑏, 𝑐} be two rings. Where 𝑆 is ring and 2 × 2 matrices  over 𝑍2 with 2nd 

row has 0. where = [
0 0
0 0

] , 𝑎 = [
0 1
0 0

], 𝑏 = [
1 0
0 0

] , 𝑐 = [
1 1
0 0

],. 

𝑍2 × 𝑆 = {(0, 𝑒), (0, 𝑎), (0, 𝑏), (0, 𝑐), (1, 𝑒), (1, 𝑎), (1, 𝑏), (1, 𝑐)}. Then two 𝜔 − 𝑄-CFSRs 𝐴1 and 𝐴2 of 𝑍2 

and 𝑆 is defined by 

 𝐴1 = {((0, 𝑞),0.3𝑒𝑖
𝜋

12) , ((1, 𝑞), 0.2𝑒𝑖
𝜋

15)} , where 𝑞 ∈ 𝑄 

𝐴2 = {((𝑒, 𝑞), 0.4𝑒𝑖
𝜋

3) , ((𝑎, 𝑞), 0.55𝑒𝑖
𝜋

2) , ((𝑎2, 𝑞), 0. .43𝑒𝑖
𝜋

3) , ((𝑎3, 𝑞), 0.5𝑒𝑖𝜋)}  

(𝐴1 × 𝐴2)(𝑚, 𝑞) = {
0.3𝑒𝑖

𝜋
12, for all 𝑚 ∈ {(0, 𝑒), (0, 𝑎), (0, 𝑏), (0, 𝑐)} 

0.2𝑒𝑖
𝜋

15, for all 𝑚 ∈ {(1, 𝑒), (1, 𝑎), (1, 𝑏), (1, 𝑐)}  
 

Here, 𝐴𝜔
1 × 𝐴𝜔

2 is complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑍2 × 𝑆 and 𝐴𝜔
1 is complex anti 𝜔 − 𝑄 −fuzzy 

subring of  𝑍2. But 𝐴𝜔
2 is not a complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑆. 

of  𝐻1. But 𝐴𝜔
2 is not a complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑆2. 

Theorem 4.8:  

Let 𝐴𝜔𝑎𝑛𝑑 𝐵𝜔 be two complex anti 𝜔 − 𝑄 −fuzzy sets of rings 𝑆1 and 𝑆2, respectively. If 𝐴𝜔 × 𝐵𝜔  

is a complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑆1 × 𝑆2, then the conditions hold are, 

(i) 𝜂𝐴𝜔(0, 𝑞) ≤ 𝜂𝐵𝜔(𝑛, 𝑞) and 𝜑𝐴𝜔(0, 𝑞) ≤ 𝜑𝐵𝜔(𝑛, 𝑞), for all 𝑛 ∈ 𝑆2 and 𝑞 ∈ 𝑄 

(ii) 𝜂𝐵𝜔(0′, 𝑞) ≤ 𝜂𝐴𝜔(𝑚, 𝑞) and 𝜑𝐵𝜔(0′) ≤ 𝜑𝐴𝜔(𝑚), for all 𝑚 ∈ 𝑆1 and 𝑞 ∈ 𝑄 

Where 0 and 0′ are identities of 𝑆1 and 𝑆2 respectively. 

Proof: Let 𝐴𝜔 × 𝐵𝜔  be a complex anti 𝜔 − 𝑄 −fuzzy subring  of 𝑆1 × 𝑆2. Suppose the two conditions (1) 

and (2) do not hold. Then ∃ 𝑚 ∈ 𝑆1& 𝑛 ∈ 𝑆2 &  𝑞 ∈ 𝑄 : 
(i) 𝜂𝐴𝜔(0, 𝑞) ≤ 𝜂𝐵𝜔(𝑛, 𝑞) and 𝜑𝐴𝜔(0, 𝑞) ≤ 𝜑𝐵𝜔(𝑛, 𝑞) 

(ii) 𝜂𝐵𝜔(0′, 𝑞) ≤ 𝜂𝐴𝜔(𝑚, 𝑞) and 𝜑𝐵𝜔(0′, 𝑞) ≤ 𝜑𝐴𝜔(𝑚, 𝑞) 
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Consider 𝜃𝐴𝜔×𝐵𝜔 ((𝑚, 𝑛), 𝑞) = max{𝜂𝐴𝜔(𝑚, 𝑞), 𝜂𝐵𝜔(𝑛, 𝑞)} 𝑒𝑖max{𝜑𝐴𝜔(𝑚,𝑞),𝜑𝐵𝜔(𝑛,𝑞)} 

≤ max {𝜂𝐴𝜔(0, 𝑞), 𝜂𝐵𝜔(0′, 𝑞)}𝑒𝑖max{𝜑𝐴𝜔(0,𝑞),𝜑𝐵𝜔(0′,𝑞)} = 𝜃𝐴𝜔×𝐵𝜔 ((0, 0′), 𝑞) 

But 𝐴𝜔 × 𝐵𝜔 is complex anti 𝜔 − 𝑄 −fuzzy subring. The fowling two conditions is  must be hold. 

(i) 𝜂𝐴𝜔(0, 𝑞) ≤ 𝜂𝐵𝜔(𝑛, 𝑞) and 𝜑𝐴𝜔(0, 𝑞) ≤ 𝜑𝐵𝜔(𝑛, 𝑞), for all 𝑛 ∈ 𝑆2 and 𝑞 ∈ 𝑄 

(ii) 𝜂𝐵𝜔(0′, 𝑞) ≤ 𝜂𝐴𝜔(𝑚, 𝑞) and 𝜑𝐵𝜔(0′, 𝑞) ≤ 𝜑𝐴𝜔(𝑚, 𝑞), for all 𝑚 ∈ 𝑆1 and 𝑞 ∈ 𝑄 

Theorem 4.9:  

Let 𝐴𝜔𝑎𝑛𝑑 𝐵𝜔complex anti 𝜔 − 𝑄 −fuzzy subrings of 𝑆1 and 𝑆2 such that 𝜂𝐵𝜔(0′, 𝑞) ≤ 𝜂𝐴𝜔(𝑚, 𝑞) 

and 𝜑𝐵𝜔(0′, 𝑞) ≤ 𝜑𝐴𝜔(𝑚, 𝑞)  for all 𝑚 ∈ 𝑆1 and 0′ is identity of 𝑆2 and 𝑞 ∈ 𝑄. If 𝐴𝜔 × 𝐵𝜔  is anti 𝜔 − 𝑄-

fuzzy subgroup of 𝑆1 × 𝑆2, then 𝐴𝜔 is  complex anti 𝜔 − 𝑄 −fuzzy subring of 𝑆1. 

Proof:  

Let 𝑎𝑛𝑑 𝐵𝜔 be two complex anti 𝜔 − 𝑄 −fuzzy subrings of 𝑆1 and 𝑆2. Then (𝑚, 0′), (𝑥, 0′) ∈ 𝑆1 ×
𝑆2. By given condition  𝜂𝐵𝜔(0′, 𝑞) ≤ 𝜂𝐴𝜔(𝑚, 𝑞) and 𝜑𝐵𝜔(0′, 𝑞) ≤ 𝜑𝐴𝜔(𝑚, 𝑞), for all 𝑚, 𝑥 ∈ 𝑆1.  

Consider  

𝜃𝐴𝜔(𝑚 − 𝑥, 𝑞) = 𝜂𝐴𝜔(𝑚 − 𝑥, 𝑞)𝑒𝑖𝜑𝐴𝜔(𝑚−𝑥,𝑞)  

= max{𝜂𝐴𝜔(𝑚 − 𝑥, 𝑞)𝑒𝑖𝜑𝐴𝜔(𝑚−𝑥,𝑞), 𝜂𝐵𝜔(0′ − 0′, 𝑞)𝑒𝑖𝜑𝐵𝜔(0′−0′,𝑞)}  

= {𝜂𝐴𝜔×𝐵𝜔 ((𝑚, 0′) − (𝑥, 0′), 𝑞)}𝑒
𝑖max{𝜑𝐴𝜔×𝐵𝜔 ((𝑚,0′)−(𝑥,0′),𝑞)}

  

≤ max{𝜂𝐴𝜔×𝐵𝜔 ((𝑚, 0′), 𝑞), 𝜂𝐴𝜔×𝐵𝜔 ((𝑥, 0′), 𝑞)} 𝑒
𝑖 max{𝜑𝐴𝜔×𝐵𝜔 ((𝑚,0′),𝑞),𝜑𝐴𝜔×𝐵𝜔 ((𝑥,0′),𝑞)}

  

=

max{max{𝜂𝐴𝜔(𝑚, 𝑞), 𝜂𝐵𝜔(0′, 𝑞)} , max{𝜂𝐴𝜔(𝑥, 𝑞), 𝜂𝐵𝜔(0′, 𝑞)}} 𝑒𝑖 max{max{𝜑𝐴𝜔(𝑚,𝑞),𝜑𝐵𝜔(0′,𝑞)},max{𝜑𝐴𝜔(𝑥,𝑞),𝜑𝐵𝜔(0′,𝑞)}}  

=

max{max{𝜂𝐴𝜔(𝑚, 𝑞), 𝜂𝐴𝜔(𝑚, 𝑞)} , max{𝜂𝐴𝜔(𝑥, 𝑞), 𝜂𝐴𝜔(𝑥, 𝑞)}} 𝑒𝑖 max{max{𝜂𝐴𝜔(𝑚,𝑞),𝜂𝐴𝜔(𝑚,𝑞)},max{𝜂𝐴𝜔(𝑥,𝑞),𝜂𝐴𝜔(𝑥,𝑞)}}  

= max{𝜂𝐴𝜔(𝑚, 𝑞), 𝜂𝐴𝜔(𝑥, 𝑞)} 𝑒𝑖 max{𝜑𝐴𝜔(𝑚,𝑞),𝜑𝐴𝜔(𝑥,𝑞)}  

= min{𝜃𝐴𝜔(𝑚, 𝑞), 𝜃𝐴𝜔(𝑥, 𝑞)}  

Thus, 𝜃𝐴𝜔(𝑚 − 𝑥, 𝑞) ≤ max{𝜃𝐴𝜔(𝑚, 𝑞), 𝜃𝐴𝜔(𝑥, 𝑞)}  

Also, 𝜃𝐴𝜔(𝑚𝑥, 𝑞) = 𝜂𝐴𝜔(𝑚𝑥, 𝑞)𝑒𝑖𝜑𝐴(𝑚𝑥,𝑞)  

= max{𝜂𝐴𝜔(𝑚𝑥, 𝑞)𝑒𝑖𝜑𝐴(𝑚𝑥,𝑞), 𝜂𝐵𝜔(0′0′, 𝑞)𝑒𝑖𝜑𝐵𝜔(0′0′,𝑞)}  

= {𝜂𝐴𝜔×𝐵𝜔 ((𝑚, 0′)(𝑥, 0′), 𝑞)}𝑒
𝑖max{𝜑𝐴𝜔×𝐵𝜔 ((𝑚,0′)(𝑥,0′),𝑞)}

  

≤ max{𝜂𝐴𝜔×𝐵𝜔 ((𝑚, 0′), 𝑞), 𝜂𝐴𝜔×𝐵𝜔 ((𝑥, 0′), 𝑞)} 𝑒
𝑖 max{𝜑𝐴𝜔×𝐵𝜔 ((𝑚,0′),𝑞),𝜑𝐴𝜔×𝐵𝜔((𝑥,0′),𝑞)}

  

=

max{max{𝜂𝐴𝜔(𝑚, 𝑞), 𝜂𝐵𝜔(0′, 𝑞)} , max{𝜂𝐴𝜔(𝑥, 𝑞), 𝜂𝐵𝜔(0′, 𝑞)}} 𝑒𝑖 max{max{𝜑𝐴𝜔(𝑚,𝑞),𝜑𝐵(0′,𝑞)},max{𝜑𝐴𝜔(𝑥,𝑞),𝜑𝐵𝜔(0′,𝑞)}}  

=

max{max{𝜂𝐴𝜔(𝑚, 𝑞), 𝜂𝐴𝜔(𝑚, 𝑞)} , max{𝜂𝐴𝜔(𝑥, 𝑞), 𝜂𝐴𝜔(𝑥, 𝑞)}} 𝑒𝑖 max{max{𝜂𝐴𝜔(𝑚,𝑞),𝜂𝐴𝜔(𝑚,𝑞)},max{𝜂𝐴𝜔(𝑥,𝑞),𝜂𝐴𝜔(𝑥,𝑞)}}  

= 𝜑𝐴𝜔  

= max{𝜃𝐴𝜔(𝑚, 𝑞), 𝜃𝐴𝜔(𝑥, 𝑞)}  

Thus, 𝜃𝐴𝜔(𝑚𝑥, 𝑞) ≤ max{𝜃𝐴𝜔(𝑚, 𝑞), 𝜃𝐴𝜔(𝑥, 𝑞)}  
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