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Abstract 

The information hiding deals with distortion reduction using techniques such as steganography and high security 

using cryptography. Distortion reduction is carriedout using the  Tree Based Parity Check which applies the 

concept of Majority vote strategy. The Tree Based Parity Check is optimistic for cloaking message in image. 

The proposed majority vote strategy shows lesser distortion. The SHA-1 algorithm carriedout experimentally for 

security enhancement. The result provided in proposed method works very often on large payload. 
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Introduction 

In steganography, the detectability of hidden data in a stego object is mostly influenced by four basic ingredients 

such as the cover object, the selection rule used to identify individual elements of the cover that might be 

modified during embedding,  the type of embedding operation that modifies the covering elements, and the total 

number of embedding changes .  

A commonly used strategy for steganography is to enclose the data’s lightly by distorting the cover object into a 

target stego object. If such distortion is found to be small, the stego object will be indistinguishable identified by 

the noisy cover object. Hence, reducing distortion is a very important for steganographic methods. In this 

present work, we propose an eminent embedding scheme that uses the leasser number of changes over the tree-

based parity check model. 

The Matrix embedding uses (n,k) linear codes, which is also known as syndrome coding  or coset encoding. It 

embeds and extracts a message by using the parity check matrix H of an (n,k) linear code. For matrix 

embedding, searching a stego object with lesser distortion is difficult. In certain cases, there will be both the 

constructive and fast methods. It utilized LT codes to improve the computational complexity for the wet paper 

codes. It has shown a hash function to efficiently obtain the stego object. A proposed idea called tree-based 

parity check (TBPC) is used to lessen the distortion on a cover object based on a tree structure. 

The Wet Paper Code with eminent function gives a new type of tool for steganography. The coding method that 

concentrates on the  steganographer possess the ability to utilize the arbitrary selection channels while it tries to 

decrease the number of embedding changes, considering the embedded message length is lesser than 70% of the 

total embedding capacity. So that this method can be easily incorporated as a module into majority of the 

available steganographic methods.  

The “Wet Paper” channel is highly relevant to steganography and from various situations. One of the technique 

is adaptive steganography, where the sender selects the location of pixels that will carry message bits based on 

pixels neighbourhood in the cover image. A fundamental problem with adaptive schemes is that the recipient 

may be able to retrieve the same message-carrying pixels from the stego image undermines the security of the 

algorithm. Another potential problem is that the recipient is they may not be able to retreive the same set of 

message carrying pixels from the stego image, which is altered by the embedding act itself. This type of 

problem is usually solved either by increasing the message redundancy using error correction inorder to retrieve 
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from its random bit losses and their inserts or by employing some artificial  measures, such as special 

embedding operations matched to the selection rules. These measures, however, usually limit the capacity, 

complicate the embedding algorithm, and do not give the sender the ability to fully utilize his side-information 

the cover image. Moreover, the pixel selection rule is often ad hoc and it is not always possible to justify it from 

the point of view of steganographic security. In fact, the sender may be able to utilize  any available side 

information in an unrestricted manner and perform embedding during the steganographic design principles and 

security considerations rather than the receiver’s ability to read the message. 

Preliminary andTBPC method adaptation 

 A location finding method before embedding and extraction determines a sequence of locations that point to 

elements in the cover objects.  So that the embedding algorithm modifies the elements in such locations to hide 

the message and the extraction algorithm can recover the message by inspecting the same sequence of locations. 

 

Fig.1. Master and Toggle string of master tree with L=4. 

SBs of the cover object level by level, from top to bottom and left to right. Every node of the tree corresponds to 

a LSB in the cover object provided and is indicated by the number of leaves of the master tree by L. The TBPC 

embedding algorithm provides an L-bit binary string, which is also termed as master string, by performing 

parity check on the master tree which arises from the root to the leaves (e.g., see Fig. 1.).  

The embedding algorithm hides the message by modifying the bit values of certain nodes found in the master 

tree. We generally consider that the length of the message is also L. Performing the bitwise exclusive ( XOR) 

operation between message and master string, we obtain a toggle string (e.g., see Fig. 1). Then, the embedding 

algorithm may constructs a new form of N-ary tree, called the toggle tree in the bottom-up order and fills the 

leaves the bit values of toggle string and the other nodes with 0. Then, level by level, from the bottom to the 

root, with its child nodes which are flipped if all its child nodes possess bits 1 (e.g., see Fig. 2). The embedded 

algorithm obtains the stego tree by performing XOR between the master tree and the toggle tree (e.g., see Fig. 

3).  TBPC extraction algorithm is simple. We can extract the message by carrying a parity check on each of the 

root-leaf path of the stego tree from left to right. 

Majority vote Strategy 

Two critical issues considered for steganographic method are:  reducing distortion on cover objects and better 

efficiency for embedding and extraction. We give a major importance for the vote strategy in building the toggle 

tree. It uses the least number of 1’s under the TBPC. Because,  the number of 1’s in the toggle tree is the number 

of modifications on the master tree, major importance for the vote strategy can produce a stego tree with least 

distortion on the master tree. 
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The proposed method generally utilizes  a set of standard measures, to capture particular image properties before 

or after the embedding process, which effect the performance of steg analysis techniques used so far. Such  

measures are usually divided into two categories. First cover image properties, and second cover-stego based 

distortion measures. 

A. Algorithm 

Hereafter, we may use the majority-vote parity check (MPC) to indicate our method due to its use of majority 

vote in deriving the parity of check bit. We usually construct a type of toggle tree with the minimum number of 

1’s level by level in the bottom-up order using the following algorithm.  

Algorithm MPC: 

Input: a toggle string of length L; 

1. Index the nodes of the initial toggle tree; 

2. Set the leaves of the toggle tree from left to right and  

    bit by bit with the toggle string and the other nodes 0; 

3. for i-1 to h 

    for each internal node on level i do 

 

        if the majority of its unmarked child nodes holds 1 

then try to flip the bit values of the given node and its child nodes; 

else if the numbers of 0 and 1 in is left unmarked  child nodes are then same 

                            then mark this internal node; 

4. if N is even then 

    for i=h-1 for 1 

    for each marked internal node that holds 1 on level i do 

    flip the bit values of this node and its child nodes; 

First, index all nodes of a complete N-ary tree with L leaves from top to bottom and left to right. Set the L -bit 

toggle string bit by bit into the L leaves from left to right and the other nodes 0. Assume that the level of the tree 

is h. Traverse all nonleaf nodes from level 1 to h. A nonleaf node and its child nodes form a simple complete 

subtree. For each simple complete subtree, if the majority of the child nodes hold 1, then flip the bit values of all 

nodes in this subtree. Since the construction is bottom-up, the bit values of the child nodes in every simple 

complete subtree are set after step 3. Note that marking a node at step 4 applies only for N  being even. When N 

is even, after step 3, there may exist a two-level simple complete subtree with N /2 1’s in the child nodes and 1 

in its root. In this case, flipping the bit values in this simple complete subtree results in one fewer node holding 

1 and keeps the result of related root-leaf path parity check unchanged. Step 4 takes care of this when the 

condition applies, and it is done level by level from top to bottom. Also note that for the root of the whole toggle 

tree, the bit value is always 0 when half of its child nodes hold 1. Thus, after step 4, the bit values of the child 

nodes in each simple complete subtree are determined. 
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The number of 1’s found in the toggle tree is the number of modifications provided. While constructing the 

toggle tree, the original TBPC method flips a simple complete subtree child nodes have 1. We prove that the 

majority vote strategy actually obtains toggle trees with the least number of 1’s. 

 

Fig.2. Construction of a toggle tree with L=4. 

We call a toggle tree as the leasser number of 1’s which corresponds to a toggle string an optimal toggle tree. 

We say that a toggle tree is in its major form  for which each of the internal node at least half of its child nodes 

have bit value 0 and the internal node is found to hold 0 when half of its child nodes exactly holding 1. The 

output of the algorithm is a toggle tree in its major form. The maximum vote guarantees that at least half child 

nodes of an internal node which holds 0. We should monitor that the every optimal toggle tree can be 

transformed into majority form. It is obvious when it is found to be even. When  we consider that N is odd, we 

can easily check each 2-level simple complete subtree level by level in the top-down and flip the bit values of 

the each  root node and its N child nodes if exactly (N+1)/2 of the child nodes found to hold 1.  We should note 

that, when this situation applies, the root node must hold 0 before flipping, otherwise the toggle tree is not found 

to be optimal. This type of  rearrangement does not include an extra 1 and the result of each root-leaf path parity 

check is not affected. 

B. Binary Linear Stego-Code 

Before showing that our method is actually a special binary linear stego-code, we briefly review the definition 

of linear stego-codes. With matrix embedding, given any message m  F2
(n-k)and any cover object x  F2

(n), the 

problem is to find a vector δ є F2
(n)  and an (n-k)×n matrix  H over F2 such that  wt(δ)  is as small as possible and 
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H x׳ = m, where x׳ = x + δ and wt(δ) is the Hamming weight of δ. Zhang and Li [13]  generalized this idea and 

defined the stego-coding matrix and the linear stego-code as follows.  

 

Fig.3. Modify the Master tree into stego tree by the toggle tree constructed from the toggle string. 

Theorem III.1: Given a cover object x of length n, a message y with length L and an N-ary toggle tree, the tree 

based parity check steganographic method with majority vote strategy is equivalent to an (n ,L ,(L+1)/2 linear 

stego-code. 

Proof: Let H be the L× n matrix corresponding to the tree based structure, and x׳ be the n-dimensional vector 

corresponding to the stego tree. Therefore H×x׳=y. According to the definition of linear stego-codes, the 

remaining is to analyse the distortion between x and x׳. The distortion is the number of 1’s in the toggle tree. 

Since the construction of the toggle tree is in the bottom-up order, only leaf nodes hold 1 initially. For even N, 

the majority vote always reduces the number of 1’s in the toggle tree while flipping. Therefore, the worst case 

for even N is that all the simple complete subtrees with leaf nodes as child nodes have N/2 child nodes holding 

1. The maximum number of 1’s in the toggle tree for even N is (L/N)(N/2)=L/2. When N is odd, every simple 

complete subtree of the toggle tree in majority form has at most N/2 child nodes holding 1. Let K=N/2. The 

worst case for odd N is that the root holds 1 and K child nodes of every simple complete subtree hold 1. The 

maximum number of 1’s in the toggle tree for odd N is 

 

Therefore, the distortion is at most (L+1)/2. This completes the proof of the theorem. 

Analysis and experimental results 

A. Average Modifications per Hidden Bit 

It is easy to construct a method that achieves the expected embedding modifications per hidden bit of 0.5. In 

other words, if we try to embed an L-bit message into the cover object, 0.5 L modifications will occur on 

average. We use  
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pToggle=  

 

to denote the expected embedding modifications per hidden bit, where  is the average number of embedding 

modifications for an L-bit message. 

Recall that the MPC method performs majority vote on every simple complete subtree to construct the toggle 

tree in the bottom-up order. Therefore, we are going to calculate the expected reduced number of 1’s for every 

simple complete subtree and sum up the expected reduced number of 1’s for all simple complete subtrees. 

For convenience, we use i -level tree to denote a complete N-ary tree of i levels. An -level tree consists of one 

root and N (i-1) level trees. An i -level simple complete subtree is a two-level tree containing a node v at level i 

and all its child nodes. 

For an h-level toggle tree, the level of the root is h and the level of a leaf is 0. Let be P(i) be the probability that 

the root of an i -level simple complete subtree holds 1 after performing majority vote. For the leaf nodes, P(0) is 

½  because the leaf nodes are uniformly filled with 0 or 1. For every  i -level simple complete subtree, P(i)  is 

the same by symmetry. Let N/2=K. Since the toggle tree is an N-ary complete tree constructed by the majority 

vote strategy, P(i)  can be expressed as follows: 

 

B. Time Complexity of MPC 

For embedding of the MPC method, the construction of an L-bit master string from a master tree is to perform 

parity check on L simple root-leaf paths. The number of parity check operations for each simple root-leaf path is 

the number of edges in this path. Since we perform parity check once for every edge, the total number of parity 

check operations is the number of edges in the master tree. Since the number of nodes in the master tree is. 

  

the time complexity to obtain a master string is O(L). The time complexity to obtain the toggle string is O(L) 

since the toggle string is derived by performing bitwise exclusive-or between the L-bit message and the L-bit 

master string. Thus, the total time complexity of the embedding algorithm is O(L). For the extraction algorithm, 

we perform parity check on  L simple root-leaf paths in the stego tree. Thus, the complexity of the extraction 

algorithm is also O(L). 

C. Comparison for Large Payloads 

Fridrich and Soukal [8] proposed two matrix embedding methods based on random linear codes and simplex 

codes. The time complexity of embedding algorithms for matrix embedding is bounded by the complexity of the 

decoding algorithms for codes, i.e., the complexity of finding the coset leader. The decoding algorithms for (n,k) 

random linear codes and (n,k)  simplex codes in [8] have time complexity O(n2k) and O (n log n), respectively, 

where _ is the code length and k is the dimension of the code. Both methods have the hidden message length n-

k. The time complexity O(L)=O(n-k) of our method is much better.  

Table I describes the experimental embedding time for our method and the method based on simplex codes. For 

a fixed relative payload, we compare the embedding time (in nanoseconds) per hidden message bit. Our method 
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is at least three times faster than the method based on simplex codes. The experiment was run on a Windows XP 

system with Athlon 2.21 GHz CPU, 1 GB RAM and implemented in JAVA. Under the same experimental 

environment, we simulated embedding for a 1280_1024 image. The comparison of embedding time with a 

similar block length and relative payload is in Table II. The embedding time of the MPC method is better. 

Fridrich and Soukal [8] simulated embedding for a 1280×1024 image using (n,k) random codes with block 

length n=100 and k=10, and 14. The experiment run by Fridrich and Soukal [8] was on a Linux system with 

Pentium IV 

TABLE I COMPARISON OF EMBEDDING TIME FOR 1280×1024 IMAGE WITH A SIMILAR RELATIVE PAYLOAD 

 

3.4-GHz CPU, 1-GBRAMand implemented in C++. The embedding time for k=10, 12, and 14 is 0.82, 2.42, and 

8.65 s, respectively. The SR can be defined differently based on other heuristics, the image format, and 

properties of image pixels/coefficients. The embedding time for the MPC method even implemented in JAVA is 

better than the random code-based method implemented in C. 

D. Experimental Results of MPC and TBPC 

 We implemented our MPC method and the TBPC method for a comparison between their pToggle values. We 

constructed N-ary toggle trees with more than 15000 leaf nodes for N=2, 3,...15. For each N, we randomly 

generated 200 distinct toggle strings. The results are shown in Fig. 4 and Table II. The results show that MPC is 

always better than TBPC for N ≥ 3. When N=2,they are the same.  

To make it clear, we define the percentage of reduced modifications as follows: 

pReduce =  

where Rt is the reduced number of 1’s in the toggle tree and Dt is the number of 1’s in the toggle string. The 

pReduce values of both methods are shown in Fig. 4 . The results show that the MPC method significantly 

improves previous TBPC results. 
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Fig.4. pToggle comparison of MPC and TBPC. 

Fridrich [5] proved that the embedding efficiency of the family of codes generated by the ZZW construction 

follows the upper bound on embedding efficiency. By applying the ZZW construction, we can generate codes 

with small relative payloads and good embedding efficiency. Table IV summarizes the comparison of our (n,L) 

stego-codes and the methods based on (n,K) simplex codes and (n,K) random linear code. 

While this decrease in embedding distortion is quite substantial by itself, we point out another important 

consequence of improved embedding efficiency. We can now embed up to 2.2 × 80 = 176 bits with the same 

embedding distortion as the one due to embedding 80 bits using regular wet paper codes. Thus, instead of 

decreasing the embedding distortion, we may choose to improve the robustness of embedded data by applying 

strong error correction code to the payload. Therefore, the improved embedding efficiency can be utilized either 

for decreasing the visual impact of  embedding or to improve the robustness of the embedded data to channel 

noise. 

TABLE III EXPERIMENTAL RESULTS OF PTOGGLE 

 

E. Applications 

The proposed method is based on an N-ary complete tree structure. Fixed the level of the tree, given a larger N 

we can hide more message bits and the relative payload is larger. Like the previous works proposed by Fridrich 

and Soukal [8], our method can be applied to the situation that the relative payload is large. On the other hand, 

since our method is asymptotically optimal, the embedding and extraction algorithms are efficient and can be 

used on online communications. 
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The Majority vote strategy provides an efficient, general, and elegant tool to solve the problem of non shared 

selection channel, which is quite common in steganography. For example, the sender can now use arbitrary side 

information, such as a high-resolution version of the cover, for selecting the placement of embedding changes 

within the cover image and further minimize the embedding distortion. This selection channel helps minimize 

the total distortion due to quantization (e.g., as in lossy compression) and embedding. 

Another application that greatly benefits from the proposed method is adaptive steganography. In adaptive 

steganography, the pixels are selected for embedding based on their local context (neighbourhood). However, 

the act of embedding itself will modify the cover image and thus the recipient may not be able to identify the 

same set of message-carrying pixels from the stego image. This problem becomes especially pronounced and 

hard to overcome for data hiding in binary images. 

Conclusion 

By introducing the majority vote strategy, the stego object is constructed with least distortion under the tree 

structure model. We also show that our method yields a binary linear stego-code and preserves the secrecy of 

the hidden data. In comparison with the TBPC method, the proposed MPC method significantly reduces the 

number of modifications on average. 
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