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Abstract- Crop diseases highly inhibit their growth. It may cause a critical loss of yield in crops; thus, 

respective crop quality or quantity gets affected. This is the reason why the detection of the disease in crops 

plays a significant role in the field of agriculture. Detection of crop diseases using some automatic techniques 

is helpful as it minimizes a massive work of supervision in big fields of production. It identifies the early 

symptoms of diseases in crops, i.e., as when they start to become visible on the plant leaves. In this study, 

beans crop leaf images were used in training for the classification, with a total of 1296 leaf images. Two Deep 

Learning models, namely, GoogleNet and VGG16 have been used to automatically extract the features from 

the images fed to the trained network. For training, bean crop leaves were classified into three different 

categories (classes), namely, Angular Leaf Spot, Beans Rust, and Healthy. Experimental results show that 

GoogleNet performs better than VGG16 with an accuracy of 95.31%. Visualization approaches , namely, 

Visualization of Intermediate layer activations, Visualization of the CNN filter, and Visualization of Heat Maps 

were used for analyzing, understanding the symptoms, and localization of diseased regions in the leaves. 

Moreover, it helps the naïve users to understand how a convolutional neural network works internally 

"instead of a black box" to identify and classify the diseased regions in an image. 
 

Keywords- Deep learning, classification, visualization, activation map, CNN. 

I. INTRODUCTION 

Deep Learning (DL) has been started in 1943, as a new subcategory of Machine 

Learning(ML) when threshold logic was proposed to form a learning (computer) model 

that resembles the brain of humans. The evolution of research in this field can be 

categorized into 2-time frames: starting from 1943 to 2006 and from 2012 to the present. 

In its initial phase of developments, Backpropagation [1], Hand-written text recognition 

[2], chain-rule [3], and training problems were seen [4,5]. Subsequently, there were a lot of 

architectures/techniques that were proposed for multiple applications like the healthcare 

sector [6], marketing [7], image recognition [8–13], and text recognition [2,14,15]. Among 

all the frameworks, AlexNet [16] is observed as a benchmark in the area of DL, after 

winning the ImageNet challenge (ILSVRC) in 2012. After this, various architectures were 

proposed to overcome the research gaps seen previously. Several well-known performance 

metrics such as training/validation accuracy and loss [17,18], top-5%/top-1% error 

[8,10,16,19], classification accuracy (CA) [20–22], F1-score [23,24], precision and recall 

[9,17,23] were used to evaluate the results of these architectures.  
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As DL frameworks began to make advancements with the time, they were deployed in the 

field of image classification and recognition. These frameworks have also been introduced 

in various agricultural applications, e.g., plant leaves classification was carried out by 

deploying author- modified Convolutional Neural Network (CNN) with random forest (RF) 

classifier. Among 32 crop species, its performance was observed using CA at 97.3% [25]. In 

studies [26,27] and [28], authors performed implementations for fruit and leaf counting. 

For the classification of different crop types, Kussul et al. [29] implemented a user-modified 

CNN, Mortensen, et al. [18] applied VGG16, Rubwurm et al. [17] proposed LSTM, and 

Rebetez et al. [30] deployed CNN with RGB histogram. In this paper, a performance 

comparison has been made between the two pre-trained models GoogleNet and VGG16, in 

order to classify the healthy and diseased leaves of bean crops.  

The rest of the paper is framed into the following sections. Section 2, gives  some of the 

insights of DL. Section 3, discusses the Materials used for crop disease detection. Section 4, 

describes the experimental analysis using pre-trained models deployed over a small data 

sample. Section 5, Visualizing the learning process on CNN. Finally, section 6 concludes the 

study. 

II. INSIGHTS OF DL 

 

A. Applicability of DL for crop disease detection 

Many DL architectures/models were developed soon after the famous AlexNet [16] for 

image segmentation, identification, and classification. This section shows some of the 

researches carried out using well-known DL models for the detection and classification of 

crops' diseases. In most of the studies, the PlantVillage dataset has been commonly used as 

it comprises 54,306 images of 14 distinct crops with 26 crop diseases [9]. LeNet was 

implemented to identify the diseases in banana leaves. F1-score and CA were applied to 

evaluate the model's performance in Gray Scale and Color modes [23]. In the study [31], the 

author evaluated a modified version of LeNet architecture that was deployed to identify 

olive crop diseases. Image segmentation technique along with edge maps was applied to 

spot the crop diseases. The same model was implemented in the study [32] to identify and 

classify the diseases in soybean crops. In order to detect vine crop diseases in UAV images, 

Kerkech et al. [33] combined the color space and vegetation indices with the LeNet model. 

Zhang et al. [34] have implemented the three CNN frameworks; AlexNet, ResNet, and 

GoogLeNet to identify the diseases in tomato leaves. Training and validation accuracy was 

computed to measure the performance of the architectures; ResNet gave the best results 

among all.  

B. Data sources 
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It was observed that mainly large image datasets were applied over the DL 

architectures. In some cases, datasets comprised of thousands of images, either real images 

[9,20] or processed by the author [18,28]. Many datasets originated from publicly- 

available datasets, e.g. LifeCLEF, Flavia, PlantVillage, UC Merced, and Malayakew. Moreover, 

several other datasets compromised of the real images captured by the researcher 

according to their needs [11,22,37,38]. These images were taken either by UAV [4,30,39], 

airborne [40], satellite-based remote sensing [17,29], or using fields sensors [41]. In 

general, data requirement increases with the complexity of the problem, e.g., more training 

data is needed in DL when there is a small variation in between classes and the need is to 

identify a large number of classes in the dataset [9,17,22]. 

 

C. Data- pre-processing 

It comprises the pre-processing of the provided data into floating-point vectors, the data 

readable by a CNN. The major part of related work done includes certain image pre-

processing steps that were performed on the images prior to the training or their extracted 

features applied at the input layer of the DL architecture. Some well- known pre-processing 

techniques were image resizing (resized to 60x60, 96x96, 128x128, 256x256 pixels), data 

annotations [37,42], and image segmentation ( used to highlight the regions of interest 

[9,11,20,43,44] and to increase the dataset size [30,45]). Some pre-processing techniques 

were also deployed for noise removal from images such as background removal [9,21], 

non-green pixel removal [20], extraction of foreground pixels [46]. Other techniques 

involved bounding boxes formation [21,42], conversion of image dataset to grayscale [23], 

or HSV color model [46]. Furthermore, in some studies, the features extracted from the 

images were fed to the input terminal of the DL model such as statistical and shape features 

[25], wavelet transformations [47], histograms [22,25,30], GLCM features [48], and PCA 

filters [22]. 

 

D. Data augmentation 

Various data augmentation techniques [16] have been applied in the literature to 

enhance the diversity of image data for training models without adding new data. It helps 

to increase the overall learning process and the efficiency of the model. Augmentation 

procedure is especially significant for small datasets [11,18,38,49] for the training of DL 

models, as it helps in the generalization of data through serving the model with a variety of 

data. The use of data augmentation was also observed in the researches , where DL models 

were trained using synthetic images and were validated/tested using the real images 

[18,28]. 

 

E. Performance metrics 
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Various performance metrics have been used by the researchers to evaluate the 

performance of the model, each being precise to the DL model deployed in the study. In 

Table 1, these metrics are defined along with their used symbol. In some studies where the 

term accuracy is used without defining its meaning, we considered it as classification 

accuracy (CA). It has been deployed as the most commonly used metric. F1- score, RMSE, 

IoU, RFC are some other popular performance metrics. It was observed that some papers 

deployed a combination of metrics for the prediction of the model [50]. 

Table 1. Performance metrics deployed in studies under review. 
Performance 

Metric 

Definition Symbol Reference 

Classification 

Accuracy 

It is the % correct prediction from the total 

ones. 

 

CA= 
𝑇𝑃+𝑇𝑁(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 

Notations, 

TP= true positive 

TN= true negative 

FP= false positive 

FN= false negative 

CA [25,40,43,46,51] 

[20–22] 

Precision It is a fraction of the correct prediction 

from the total relevant results. 

P = 
𝑇𝑃𝑇𝑃+𝐹𝑃 

P [9,17,23,50] 

Recall It is a fraction of True Positive from the 

total number of True Positive and false 

negatives. 

R = 
𝑇𝑃𝑇𝑃+𝐹𝑁 

R [9,17,23,50] 

F1-score Defined as the harmonic mean of precision 

and recall. 

F1 = 
2∗𝑇𝑃∗𝐹𝑃𝑇𝑃+𝐹𝑃  

F [23,24] 

Mean Square 

Error 

Mean of the square of the errors between 

predicted and observed values. 

MSE - 

Root Mean 

Square Error 

Standard deviation of the differences 

between predicted values and observed 

values. 

RMSE [41,52] 

Ratio of total 

fruits counted 

It was computed as the ratio of the 

predicted count value (of fruits), and the 

actual count. The actual count was 

calculated by taking the average of the 

model. 

RFC [28,42] 

Intersection 

over Union 

A metric that evaluates predicted bounding 

boxes, by dividing the area of overlap 

between the predicted and the ground-

truth boxes, by the area of their union. 

IoU [18,50] 

 

III. MATERIALS AND METHODS 

In order to perform the implementation of DL architectures, various steps are needed; 

begin from the dataset collection to performance analysis and visualization mappings, the 
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complete procedure is shown in figure 1. Initially, the input data is collected [9] and then 

split into two portions, 80-20 ratio of training and validation set. Soon after, DL 

architectures are deployed over the dataset with pre-training and without pre-training, and 

training/validation curves are drawn to represent the significance of the architectures. 

Moreover, performance metrics are applied to the classification of images (crop disease). 

Various visualization techniques are also mapped on the test data in pr ediction mode. 

 

 
A. Pre-trained models 

For classification of crop diseases, DL models, especially CNN's, are trained directly over 

raw input images. Consequently, the DL models result in learning of the extracted features 

from input images without the involvement of any kind of manual help (human- 

intervention). In other words, automatic feature extraction occurs along with the training 

of the classifier. We have used two CNN models, namely, GoogleNet and VGG16. These 

(https://github.com/AI-Lab-Makerere/ibean/) 

Data collection 
Partitioning of the dataset into 
training, validation, and testing 

sets, 80:20 ratio split 

Building the CNN Pre-trained GoogleNet and 
VGG16 models  

Hyper-parameter tuning for 
training Data -preprocessing 

Fitting and saving the model 

Loss and Accuracy curves with 
training & validation set 

Classification results  

Figure 1. Shows the beans crop classification methodology using  CNN. 

Training and validation 
of the model 

Display of test image 

Visualization of 

the intermediate 

CNN outputs 

Performance metrics Accuracy, Loss 

Visualization of the CNN filter and Heat Map visualizations using 
VGG16 model 

https://github.com/AI-Lab-Makerere/ibean/
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frameworks were presented in computer vision challenges such as ImageNet and got some 

winning positions. The motive is to deploy these models for the identification of crop 

diseases.   

1) VGG16  

VGG16 is a 16 layered CNN architecture with 3x3 convolutional filters deployed to 

enhance the depth of the network. It revealed substantial upgrading for the accuracy of 

image recognition over large scale. The weight configuration of VGG16 architecture is 

openly accessible. This model involved of 138 million parameters that mark it challenging 

to handle. To detect the diseases in wheat crops, Lu et al. [39] implemented two DL 

architectures, namely, VGG- FCN, and VGG- CNN. Furthermore, feature visualization was 

done for each block in these DL models. In another research [53], the VGG- CNN framework 

was implemented for identification of disease (Fusarium wilt) in radish in which K- means 

clustering algorithm was applied to detect the spots of diseases. 

 

2) GoogLeNet  

Szegedy et al. [19] have implemented a 22 layers deep CNN model for image detection 

and classification. The main significance of this model is to improve the utilization of the 

computational resources that were deployed in the network. With the constant 

computational budget, the width and depth of the CNN were increased in this model. 

Hebbian principle and the concept of multi-scale processing was used to optimize the 

quality of architecture. GoogLeNet gave a top-5 error rate of 6.67%, which is very similar to 

human-level performance. 

 

B. Workstation specifications and deep learning framework 

All the implementations were performed using GoogleColab (python 3) on a personal 

computer with GPU:   

 Python 3.7,  

 1xTesla K80,  

 2496 CUDA cores, and  

 12GB GDDR5 VRAM.  

Such kind of GPU specification is vital for reducing the learning time from days to a few 

hours. GPU support is very significant in the processing of ample examples in each iteration 

of learning. For the implementation of a DL, there is a need for committed software and 

hardware to speed up the training. 

 

C. Dataset 
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The dataset was choosen from the GitHub (https://github.com/AI-Lab-Makerere/ibean/). It 

comprised of the beans crop leaf images taken from the real field using a smartphone. 

Samples of the leaf images according to the divided classes are shown in figure  2. Table 2 

show a description of the used dataset. This dataset holds 1296 images split into three 

classes. We have used three categories (labels) for the identification of diseases in crops. 

Table 2. Summarization of Bean dataset. 

Name of disease Total number of image  

Bean Rust 436 

Angular Leaf Spot 432 

Healthy 428 

Total 1296 

 

 
 

IV. EXPERIMENTAL ANALYSIS 

It is observed that the fine-tuning of pre-trained networks performed better than 

training from scratch (without pre-trained weights). Moreover, the fine-tuning of 

hyperparameters increases the accuracy of VGG16 from 0.896 to 0.9375, and GoogleNet 

from 0.901 to 0.9531. The impact of transfer learning is clarified by the capability of the 

network that reuses and transmit the features from one problem domain to another. These 

inherited features are used only with some minor changes in the last layers. Furthermore, 

(a)                 (b)     (c) 

(d)                 (e)        (f) 

Figure 2. shows the beans crop images as follows: (a), (b) represents the Angular Leaf Spot, (c), 

(d) represents the bean rust disease, and (e), (f) represents the heathy leaf images. 

https://github.com/AI-Lab-Makerere/ibean/
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the fine-tuning of hyperparameters is very helpful in situations where training datasets are 

small. The pre-trained models were trained over large datasets (ImageNet) with a higher 

number of labels, and these were reused over the smaller training examples. In addition, 

fine-tuning also benefits for training over the machines with a limited amount of memory 

in terms of GPU.  

A comparison of the performance of pre-trained models is made with the models that 

were trained from scratch with randomly assigned network weights. It draws the effect of 

transfer learning on crop disease classification. Table 3 and figure 3 show the experimental 

results obtained with pre-trained and without pre-training. 

Table 3. Experimentation results. 

Deep architectures Performance 

Measures 

Without pre-training With transfer 

learning 

VGG16 Accuracy 

Loss  

 

0.896 

0.319 

0.9375 

0.2608 

 

GoogleNet Accuracy 

Loss  

 

0.901 

0.329 

0.9531 

0.2024 

 

 
Figure 3. Analysis of DL models (with pre-trained weights versus training from scratch) 

 

V. VISUALIZING THE LEARNING PROCESS IN CNN 

It is observed that DL models are often categorized as "black box representations of 

learning," as these representations having difficulty in the extraction and presentation in a 

human-readable structure. However, this is not entirely true for CNNs, as CNN's represent 

the visual concepts of the convolutional layers. Here we present three visualization 

concepts of the CNN:  

A. Visualization of the intermediate CNN outputs (Intermediate layer activations): 

It is useful to understand how the subsequent convolutional layer transfers their 

input from the first layer to the last one, and it also gives the idea of what CNN filters 

do. 

B. Visualization of the CNN filter: 

0,86

0,88

0,9

0,92

0,94

0,96

VGG16 GoogleNet

Accuracy (pre-trained)

Accuracy(without pre-

training)

DL models 
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It is beneficial to understand precisely how visual patterns are receptive to a layer in 

a CNN. 

C. Visualization of heat maps for class activation in an input (image): 

It is beneficial to understand the parts of an input image that need to be identified to 

a particular class, or it allows a user for the localization of objects (regions of 

interest) in required images. 

For the first approach (Activation visualization), We are using the small CNN, which is 

trained from scratch for beans disease. For the rest two methods, we have used the VGG16 

framework. 

 

A. Visualization of intermediate layer activation  

Visualization of intermediate layer activations displays the feature maps, which are the 

resultant of the several convolutional and pooling layers in the CNN, provided a particular 

input. The output of the specific layer is termed as its activation [54,55]. It shows a view of 

how any input is segmented into distinct filters learned by the CNN. In this study, for 

feature maps visualization, three dimensions (channels), namely, height, width, and depth, 

are utilized. Each channel encodes its comparatively individual features. 

  
The best way for visualization of such features is by individually plotting curves of the 

content of each channel in 2D- image format. Figure 4 shows the steps needed to proceed 

with the visualization of intermediate layer activations. The pre-processed image of a leaf 

(shown in figure 5) has 498*498 feature maps with one batch sample and 32 channels. It 

Loading the 

model 

Pre- 
processing of 
a single input 

image 

Display of 

test image 

Instantiating a model 

from an input tensor and 
a list of output tensors 

Running the 

model in 
predict mode 

Visualization 

of the single 
channel 

Visualization of each channel in 

every intermediate activation 

Figure 4. shows the flow of the visualizations of intermediate layer activation 
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can be printed as: (1, 498, 498, 32). Feature map plotting for the 5 th channel and 12th 

channel of the first layer activation is shown in figure 5.  and the full activation 

visualization of the network is shown in figure 6. Every channel in the plotted map has 

eight activation maps of features. For extraction of the feature maps, a CNN model is 

needed that can carry the batches of input images and results in the outcomes of the 

activations for all convolutional and pooling layers.  The model is realized using two 

parameters, namely, a list of input tensors and a list of output tensors. When an input 

image is fed to this model, it returns the layers' activation values. These are some 

characteristics of visualizations: 

 There are several detectors such as edge detector, bright dot detector, luminance 

detector, etc. present in the first layer of the network. In this phase, the feature 

activation maps contain the complete information present in the provided image. 

 As we go deeper, the feature activations will become more abstract and lesser 

visible for interpretation. Initial representations carry more visual information , and 

higher-level representations carry lesser visual information that is relevant to the 

classes of the image. 

 The depth of the convolutional layer increases the sparseness of the feature 

activations that means, at the initial layer, input image activates all the maps 

(filters); however, in subsequent layers, many filters left as blank. 

 

 

 

Figure 5. Activation visualizations for channels. 

(a) Pre-

processed 

image 

(c) Visualization of 

the activations in the 

12
th

 channel 

(b)  Visualization of 

the activations in the 

5
th

 channel 
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(a) 

(b) 

(d)         (e) 

(a), (b), (c), (d), and (e) are some intermediate layer activations of each channel. 

Figure 6. Shows the intermediate channel activations 

(c) 
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B. Visualization of CNN's filter 

Filter visualization shows how the CNN layers are reflected in the world. Every layer in the CNN 

absorbs a pool of filters. The filters on CNN become progressively complicated and more advanced 

with the depth of the model. In the study [56], A feature visualization method was used to 

visualize the working of convolutional filters on the ImageNet dataset. Toda et al. [55] 

showed how CNNs diagnose crop diseases. It demonstrated the diagnosis of diseases for 

the plant's leaves taken from the PlantVillage dataset. The inspection of filters/ maps 

learned by the convolution network was used to show the visible patterns that are the 

response of an intended filter applied to the channel.  Gradient descent was used in the 

input space for this functionality. Gradient descent was applied to the values in the input 

image of the CNN, which helps in maximizing the response of a particular filter (map). The 

resultant image is the one to which the selected filter is highly responsive. For the 

implementation of this approach, there is a need to form a loss function that helps in 

maximizing the value of a provided filter in a given convolutional layer  [54]. 

Subsequently, the stochastic gradient descent was used for the adjustment of the values 

in an input image in order to maximize the feature map activation value. For the 

implementation of gradient descent, there was a need to find the gradient of the loss 

according to the input fed top of the model. Furthermore, gradient descent normalization 

was carried out to make the process smoother. It could be achieved by dividing the tensor 

through its square root of the average of the square of values in the tensor (L2 norm). This 

process ensured that the magnitude of the updates for the input image remains in the same 

range. Figure 7 shows the flow diagram for visualization of CNNs filter, and figure 8 displays 

an instance of the pattern for the 0th channel in layer block2_conv1. 

 

 
 

 

Loss tensor definition 

to visualize the filter 

 Acquiring the 
gradient loss w.r.t. 
input image 

Gradient 

Normalization 

Loss maximization 

using stochastic 

gradient descent 

Utility function to 

convert a tensor 

into a valid image 

Function generator 

for feature 

visualization 

Figure 7. displays the flow diagram for visualization of CNNs filter. 
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It was observed that filter '0' in layer block2_conv1 is receptive to a dot-like pattern (see 

figure 8). Similarly, visualization could be displayed for other layers also using the different 

available filters.  

 

C. Heat maps visualization for class activation  

Heat map visualizations are beneficial to understand which segment of an input image 

will be forwarded to a CNN for the final decision of classification. It also helps to debug the 

process of decision-making for a CNN, especially when there is any classification mistake. It 

also permits to show the location of particular objects in an input image. This visualization 

category is termed as class activation map (CAM) visualization and comprise s the 

production of heat maps for class activation in the given image. A class activation heat map 

can be represented as a 2D grid of scores belonging to a particular output class, evaluated 

for each location over the input image in order to show the significance of every location 

for its respective class. For example, when input is fed into a CNN trained with images of 

plant diseases, CAM visualization permits for the generation of a heat map for class 

"disease" that indicates disease like spots present in an image. Fujita et al. [57] developed a 

plant diagnosis system for the severe viral manifestations in 9000 cucumber crop leaves 

images. They have deployed Heatmap visualizations to show the diagnostic regions in 

leaves images and captures significant features in their results.   

"Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization" 

[58], a visualization approach given by Selvaraju et al. involves the convolution layer's 

output feature map, fed an input image, and weighing each channel in that feature map 

using the gradient of class w.r.t. the channel. This approach is illustrated in figure 9, using a 

pre-trained VGG16 network. Let us consider an input image of bean crop disease. The DL 

model trained with the image size dimensions of 500*500 pre-processed using some rules. 

After pre-processing, image sizes were adjusted according to the VGG16 architecture. 

Figure 8. shows the visibility of pattern for the 0th 

channel in layer block2_conv1. 
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Grad- CAM algorithm [58] was applied for the visualization of the parts of the image that 

looks like the diseased spots present in the leaf of the bean crop. To accomplish the 

purpose of visualization, heat map normalization was done using heat map post-

processing, and the normalization range was set up between 0-1. Figure 10. shows the 

effects of Heat Map class activation. 

 
VI. CONCLUSION 

In this paper, CNN based DL models are compared in order to carry the beans leaf 

disease (angular leaf spot and beans rust) classification. The experimental results show 

that GoogleNet performs better than VGG16 for disease classification. Furthermore, the  

experimentation also validates the use of pre-training (transfer learning) over the without 

pre-training (training from scratch). This study also performs some visualizations 

Loading of the 
network VGG16 

using pre-trained 
weights 

Pre-processing of 
input image for 

VGG16 

Applying Grad-

CAM algorithm 

Heat Map post-
processing 

Superimposing 
the heat map over 

the original 

image 

Figure 9. shows the steps needed for Heat maps visualization of class activation. 

(a) Test image of 
rust- disease in 

bean crop leaf 
 

(b) Leaf class activation     

Heat Map on the test 

image 

  

(c) Superimposition of 
class activation Heat Map 

over the original test 
image 

Figure 10. shows the effects of Heat Map class activation. 
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techniques, namely, Visualization of intermediate layer activation, Visualizatio n of the CNN 

filter, and Heat maps based visualization for class activation. It visualizes the results of 

activation maps deployed in the intermediate convolutional layers and on the regions of 

the infected image. It helps the naïve users to understand the internal working of the 

network. 
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